Porosity Prediction Based on Ensemble Learning for Feature Selection and an Optimized GRU Improved by the PSO Algorithm

被引:0
|
作者
Liu, Miaomiao [1 ,2 ]
Xu, Haoran [1 ]
Zhao, Fengda [3 ]
Zhang, Qiang [1 ,2 ]
Jia, Ying [4 ]
Xi, Jiahao [1 ]
机构
[1] Northeast Petr Univ, Sch Comp & Informat Technol, Daqing 163318, Peoples R China
[2] Key Lab Petr Big Data & Intelligent Anal Heilongji, Daqing 163318, Peoples R China
[3] Yanshan Univ, Coll Informat Sci & Engn, Qinhuangdao 066000, Peoples R China
[4] Northeast Petr Univ, Sch Elect & Informat Engn, Daqing 163318, Peoples R China
关键词
GRU; Ensemble learning; PSO; Porosity prediction; Good-point set; Committee voting;
D O I
10.1007/s44196-024-00600-x
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Accurate and reliable prediction of porosity forms the foundational basis for evaluating reservoir quality, which is essential for the systematic deployment of oil and gas exploration and development plans. When data quality of samples is low, and critical model parameters are typically determined through subjective experience, resulting in diminished accuracy and reliability of porosity prediction methods utilizing gated recurrent units (GRU), a committee-voting ensemble learning (EL) method, and an enhanced particle swarm optimization (PSO) algorithm are proposed to optimize the GRU-based porosity prediction model. Initially, outliers are eliminated through box plots and the min-max normalization is applied to enhance data quality. To address issues related to model accuracy and high training costs arising from dimensional complexity, substantial noise, and redundant information in logging data, a committee-voting EL strategy based on four feature selection algorithms is introduced. Following data preprocessing, this approach is employed to identify logging parameters highly correlated with porosity, thereby furnishing the most pertinent data samples for the GRU model, mitigating constraints imposed by single-feature selection methods. Second, an improved PSO algorithm is suggested to tackle challenges associated with low convergence accuracy stemming from random population initialization, alongside the absence of global optimal solutions due to overly rapid particle movement during iteration. This algorithm uses a good-point set for population initialization and incorporates a compression factor to devise an adaptive velocity updating strategy, thereby enhancing search efficacy. The enhanced PSO algorithm's superiority is substantiated through comparison with four alternative swarm intelligent algorithms across 10 benchmark test functions. Ultimately, optimal hyper-parameters for the GRU model are determined using the improved PSO algorithm, thereby minimizing the influence of human factors. Experimental findings based on approximately 15,000 logging data points from well A01 in an operational field validate that, relative to three other deep learning methodologies, the proposed model proficiently extracts spatiotemporal features from logging data, yielding enhanced accuracy in porosity prediction. The mean squared error on the test set was 7.19 x 10-6, the mean absolute error stood at 0.0082, and coefficient of determination reached 0.99, offering novel insights for predicting reservoir porosity.
引用
收藏
页数:20
相关论文
共 50 条
  • [41] Research on line loss prediction of distribution network based on ensemble learning and feature selection
    Zhang, Ke
    Zhang, Yongwang
    Li, Jian
    Jiang, Zetao
    Lu, Yuxin
    Zhao, Binghui
    FRONTIERS IN ENERGY RESEARCH, 2024, 12
  • [42] Study of Fault Feature Extraction Based on KPCA Optimized by PSO Algorithm
    Pan Hongxia
    Wei Xiuye
    Huang Jinying
    2010 IEEE INTERNATIONAL CONFERENCE ON FUZZY SYSTEMS (FUZZ-IEEE 2010), 2010,
  • [43] Adaptive Wind Speed Forecasting Based on Optimized Ensemble Numerical Weather Prediction and Temporal Feature Selection
    Liu, Chenyu
    Zhang, Xuemin
    Mei, Shengwei
    2021 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2021,
  • [44] Research on Oil Well Production Prediction Based on GRU-KAN Model Optimized by PSO
    Qiu, Bo
    Zhang, Jian
    Yang, Yun
    Qin, Guangyuan
    Zhou, Zhongyi
    Ying, Cunrui
    ENERGIES, 2024, 17 (21)
  • [45] Study on Icing Prediction of Power Transmission Lines Based on Ensemble Empirical Mode Decomposition and Feature Selection Optimized Extreme Learning Machine
    Wang, Weijun
    Zhao, Dan
    Fan, Liguo
    Jia, Yulong
    ENERGIES, 2019, 12 (11):
  • [46] Hybrid Feature Selection Algorithm and Ensemble Stacking for Heart Disease Prediction
    Zaini, Nureen Afiqah Mohd
    Awang, Mohd Khalid
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (02) : 158 - 165
  • [47] Improved Intelligent Dynamic Swarm PSO Algorithm and Rough Set for Feature Selection
    Anuradha, J.
    Tripathy, B. K.
    GLOBAL TRENDS IN INFORMATION SYSTEMS AND SOFTWARE APPLICATIONS, PT 2, 2012, 270 : 110 - 119
  • [48] A Gas Emission Prediction Model Based on Feature Selection and Improved Machine Learning
    Shao, Liangshan
    Zhang, Kun
    PROCESSES, 2023, 11 (03)
  • [49] Federated and ensemble learning framework with optimized feature selection for heart disease detection
    Hrizi, Olfa
    Gasmi, Karim
    Alyami, Abdulrahman
    Alkhalil, Adel
    Alrashdi, Ibrahim
    Alqazzaz, Ali
    Ben Ammar, Lassaad
    Mrabet, Manel
    Abdalrahman, Alameen E. M.
    Yahyaoui, Samia
    AIMS MATHEMATICS, 2025, 10 (03): : 7290 - 7318
  • [50] An Optimized Bagging Learning with Ensemble Feature Selection Method for URL Phishing Detection
    Ponni Ponnusamy
    Prabha Dhandayudam
    Journal of Electrical Engineering & Technology, 2024, 19 : 1881 - 1889