Class similarity weighted knowledge distillation for few shot incremental learning

被引:2
|
作者
Akmel, Feidu [1 ]
Meng, Fanman [1 ]
Wu, Qingbo [1 ]
Chen, Shuai [1 ]
Zhang, Runtong [1 ]
Assefa, Maregu [2 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu, Peoples R China
[2] Univ Elect Sci & Technol China, Sch Informat & Software Engn, Chengdu, Peoples R China
关键词
Knowledge distillation; Semantic information; Few shot; Incremental learning;
D O I
10.1016/j.neucom.2024.127587
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Few -shot class incremental learning illustrates the challenges of learning new concepts, where the learner can access only a small sample per concept. The standard incremental learning techniques cannot be applied directly because of the small number of samples for training. Moreover, catastrophic forgetting is the propensity of an Artificial Neural Network to fully and abruptly forget previously learned knowledge upon learning new knowledge. This problem happens due to a lack of supervision in older classes or an imbalance between the old and new classes. In this work, we propose a new distillation structure to tackle the forgetting and overfitting issues. Particularly, we suggest a dual distillation module that adaptably draws knowledge from two different but complementary teachers. The first teacher is the base model, which has been trained on large class data, and the second teacher is the updated model from the previous K-1 session, which contains the modified knowledge of previously observed new classes. Thus, the first teacher can reduce overfitting issues by transferring the knowledge obtained from the base classes to the new classes. While the second teacher can reduce knowledge forgetting by distilling knowledge from the previous model. Additionally, we use semantic information as word embedding to facilitate the distillation process. To align visual and semantic vectors, we used the attention mechanism of the embedding of visual data. With extensive experiments on different data sets such as Mini-ImageNet, CIFAR100, and CUB200, our model shows state-of-the-art performance compared to the existing few shot incremental learning methods.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Prompt-based learning for few-shot class-incremental learning
    Yuan, Jicheng
    Chen, Hang
    Tian, Songsong
    Li, Wenfa
    Li, Lusi
    Ning, Enhao
    Zhang, Yugui
    ALEXANDRIA ENGINEERING JOURNAL, 2025, 120 : 287 - 295
  • [32] Few-Shot Class-Incremental Learning Based on Feature Distribution Learning
    Yao, Guangle
    Zhu, Juntao
    Zhou, Wenlong
    Zhang, Guiyu
    Zhang, Wei
    Zhang, Qian
    Computer Engineering and Applications, 2023, 59 (14) : 151 - 157
  • [33] Rethinking few-shot class-incremental learning: A lazy learning baseline
    Qin, Zhili
    Han, Wei
    Liu, Jiaming
    Zhang, Rui
    Yang, Qingli
    Sun, Zejun
    Shao, Junming
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 250
  • [34] Flexible few-shot class-incremental learning with prototype container
    Xu, Xinlei
    Wang, Zhe
    Fu, Zhiling
    Guo, Wei
    Chi, Ziqiu
    Li, Dongdong
    NEURAL COMPUTING & APPLICATIONS, 2023, 35 (15): : 10875 - 10889
  • [35] Decision Boundary Optimization for Few-shot Class-Incremental Learning
    Guo, Chenxu
    Zhao, Qi
    Lyu, Shuchang
    Liu, Binghao
    Wang, Chunlei
    Chen, Lijiang
    Cheng, Guangliang
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 3493 - 3503
  • [36] Few-Shot Class-Incremental Learning for Named Entity Recognition
    Wang, Rui
    Yu, Tong
    Zhao, Handong
    Kim, Sungchul
    Mitra, Subrata
    Zhang, Ruiyi
    Henao, Ricardo
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 571 - 582
  • [37] Jointly Optimized Classifiers for Few-Shot Class-Incremental Learning
    Fu, Sichao
    Peng, Qinmu
    Wang, Xiaorui
    He, Yang
    Qiu, Wenhao
    Zou, Bin
    Xu, Duanquan
    Jing, Xiao-Yuan
    You, Xinge
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024, 8 (05): : 1 - 11
  • [38] Few-shot class incremental learning via robust transformer approach
    Paeedeh, Naeem
    Pratama, Mahardhika
    Wibirama, Sunu
    Mayer, Wolfgang
    Cao, Zehong
    Kowalczyk, Ryszard
    INFORMATION SCIENCES, 2024, 675
  • [39] Few-shot class-incremental learning based on representation enhancement
    Yao, Guangle
    Zhu, Juntao
    Zhou, Wenlong
    Li, Jun
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (04)
  • [40] Few Shot Class Incremental Learning via Grassmann Manifold and Information Entropy
    Gu, Ziqi
    Lu, Zihan
    Han, Cao
    Xu, Chunyan
    ELECTRONICS, 2023, 12 (21)