Defect Engineering Boosting High-Performance Graphite Anode for Sodium-Ion Batteries in Ether-Based Electrolytes

被引:2
|
作者
Yao, Luobin [1 ]
Zhang, Kaicheng [1 ]
Tian, Yu [1 ]
Zhang, Shuyan [1 ]
Zeng, Yujie [1 ]
Hu, Shan [1 ]
Jian, Zelang [1 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, State Key Lab Adv Technol Mat Synth & Proc, Wuhan 430070, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
defect-engineeried; graphite; Na+-ion battery; INTERCALATION; GRAPHENE; ISSUES; ENERGY;
D O I
10.1002/aesr.202300296
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Sodium-ion batteries (NIBs) as one of the next-generation energy storage devices are gradually used in energy field and entering lithium-ion batteries (LIBs) market. Graphite with low price exhibits excellent Li+ reversible intercalation properties, which has been widely applied in anodes of LIBs. But it has low capacity for sodium because of its weak chemical bonding with sodium. Here, a defect engineered graphite with low graphitization structure is reported. This graphite demonstrates a defect adsorption and solvated ion intercalation of sodium ions by introducing more active sites and ether electrolytes, effectively improving the storage capacity of sodium. Further experiments and characterization show defects increased after ball milling with surface area increased, and the favorable defects on the interface of graphite are significantly increased. The defect engineered graphite absorbs more sodium-ions and exhibits capacitive characteristics with fast sodiation/desodiation process, leading to an improved capacity storage than the defect-free graphite. Meanwhile, the defect engineered graphite can deliver a capacity of 175 mAh g(-1), and maintain a good capacity retention of 84% at 5 A g(-1) after 6000 cycles. This work discovers a general methodology to obtain defect engineered graphite, which will provide an experimental strategy to achieve large-scale industrialization for low-cost NIBs.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] A modified reduced graphite oxide anode for sodium ion storage in ether-based electrolyte
    Li, Huan
    Li, Qian
    Li, Ling
    Cao, Xiaoyan
    Wang, Wei
    JOURNAL OF APPLIED ELECTROCHEMISTRY, 2021, 51 (05) : 753 - 760
  • [42] Regulating Interphase Chemistry by Targeted Functionalization of Hard Carbon Anode in Ester-Based Electrolytes for High-Performance Sodium-Ion Batteries
    Zhang, Guangxiang
    Fu, Chuankai
    Gao, Shuyang
    Zhao, Haoquan
    Ma, Chi
    Liu, Ziwei
    Li, Shuai
    Ju, Zhijin
    Huo, Hua
    Zuo, Pengjian
    Yin, Geping
    Liu, Tiefeng
    Ma, Yulin
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025,
  • [43] A High-Performance Alloy-Based Anode Enabled by Surface and Interface Engineering for Wide-Temperature Sodium-Ion Batteries
    Yang, Jian
    Guo, Xin
    Gao, Hong
    Wang, Tianyi
    Liu, Zhigang
    Yang, Qing
    Yao, Hang
    Li, Jiabao
    Wang, Chengyin
    Wang, Guoxiu
    ADVANCED ENERGY MATERIALS, 2023, 13 (29)
  • [44] MXene-based anode materials for high performance sodium-ion batteries
    Li, Junfeng
    Liu, Hao
    Shi, Xudong
    Li, Xiang
    Li, Wuyong
    Guan, Enguang
    Lu, Ting
    Pan, Likun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 658 : 425 - 440
  • [45] Molecular engineering of covalent organic nanosheets for high-performance sodium-ion batteries
    Kim, Min-Sung
    Lee, Minseop
    Kim, Min-Jae
    Jeong, Young Kyu
    Park, Jin Kuen
    Paek, Seung-Min
    JOURNAL OF MATERIALS CHEMISTRY A, 2020, 8 (34) : 17790 - 17799
  • [46] Structural engineering of electrode materials to boost high-performance sodium-ion batteries
    Liu, Qiannan
    Hu, Zhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Li, Lin
    CELL REPORTS PHYSICAL SCIENCE, 2021, 2 (09):
  • [47] Rational-designed high-performance anode materials for sodium-ion batteries: a review
    Wang, Jianzhi
    Li, Jiajia
    Zhang, Qi
    Du, Wei
    Abo-Dief, Hala M.
    Melhi, Saad
    Sellami, Rahma
    Guo, Jiang
    Hou, Chuanxin
    Sun, Xueqin
    ADVANCED COMPOSITES AND HYBRID MATERIALS, 2024, 7 (04)
  • [48] Phosphorus Nanoparticles Encapsulated in Graphene Scrolls as a High-Performance Anode for Sodium-Ion Batteries
    Pei, Longkai
    Zhao, Qing
    Chen, Chengcheng
    Liang, Jing
    Chen, Jun
    CHEMELECTROCHEM, 2015, 2 (11): : 1652 - 1655
  • [49] Hierarchical Cu doped SnSe nanoclusters as high-performance anode for sodium-ion batteries
    Chen, Rusong
    Li, Shenzhou
    Liu, Jianyun
    Li, Yuyu
    Ma, Feng
    Liang, Jiashun
    Chen, Xian
    Miao, Zhengpei
    Han, Jiantao
    Wang, Tanyuan
    Li, Qing
    ELECTROCHIMICA ACTA, 2018, 282 : 973 - 980
  • [50] An Advanced MoS2/Carbon Anode for High-Performance Sodium-Ion Batteries
    Wang, Jingjing
    Luo, Chao
    Gao, Tao
    Langrock, Alex
    Mignerey, Alice C.
    Wang, Chunsheng
    SMALL, 2015, 11 (04) : 473 - 481