Text2Tex: Text-driven Texture Synthesis via Diffusion Models

被引:14
|
作者
Chen, Dave Zhenyu [1 ]
Siddiqui, Yawar [1 ]
Lee, Hsin-Ying [2 ]
Tulyakov, Sergey [2 ]
Niessner, Matthias [1 ]
机构
[1] Tech Univ Munich, Munich, Germany
[2] Snap Res, Santa Monica, CA 90405 USA
关键词
D O I
10.1109/ICCV51070.2023.01701
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present Text2Tex, a novel method for generating high-quality textures for 3D meshes from the given text prompts. Our method incorporates inpainting into a pre-trained depth-aware image diffusion model to progressively synthesize high resolution partial textures from multiple viewpoints. To avoid accumulating inconsistent and stretched artifacts across views, we dynamically segment the rendered view into a generation mask, which represents the generation status of each visible texel. This partitioned view representation guides the depth-aware inpainting model to generate and update partial textures for the corresponding regions. Furthermore, we propose an automatic view sequence generation scheme to determine the next best view for updating the partial texture. Extensive experiments demonstrate that our method significantly outperforms the existing text-driven approaches and GAN-based methods.
引用
收藏
页码:18512 / 18522
页数:11
相关论文
共 50 条
  • [41] Text2VRScene: Exploring the Framework of Automated Text-driven Generation System for VR Experience
    Yin, Zhizhuo
    Wang, Yuyang
    Papatheodorou, Theodoros
    Hui, Pan
    2024 IEEE CONFERENCE ON VIRTUAL REALITY AND 3D USER INTERFACES, VR 2024, 2024, : 701 - 711
  • [42] 3DStyle-Diffusion: Pursuing Fine-grained Text-driven 3D Stylization with 2D Diffusion Models
    Yang, Haibo
    Chen, Yang
    Pan, Yingwei
    Yao, Ting
    Chen, Zhineng
    Mei, Tao
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 6860 - 6868
  • [43] PFB-Diff: Progressive Feature Blending diffusion for text-driven image editing
    Huang, Wenjing
    Tu, Shikui
    Xu, Lei
    NEURAL NETWORKS, 2025, 181
  • [44] Text2Scene: Text-driven Indoor Scene Stylization with Part-aware Details
    Hwang, Inwoo
    Kim, Hyeonwoo
    Kim, Young Min
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1890 - 1899
  • [45] Any-Size-Diffusion: Toward Efficient Text-Driven Synthesis for Any-Size HD Images
    Zheng, Qingping
    Guo, Yuanfan
    Deng, Jiankang
    Han, Jianhua
    Li, Ying
    Xu, Songcen
    Xu, Hang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 7, 2024, : 7571 - 7578
  • [46] Towards Open Domain Text-Driven Synthesis of Multi-person Motions
    Shan, Mengyi
    Dong, Lu
    Han, Yutao
    Yao, Yuan
    Liu, Tao
    Nwogu, Ifeoma
    Qi, Guo-Jun
    Hill, Mitch
    COMPUTER VISION - ECCV 2024, PT LXV, 2025, 15123 : 67 - 86
  • [47] Plug-and-Play Diffusion Features for Text-Driven Image-to-Image Translation
    Tumanyan, Narek
    Geyer, Michal
    Bagon, Shai
    Dekel, Tali
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 1921 - 1930
  • [48] UniTune: Text-Driven Image Editing by Fine Tuning a Diffusion Model on a Single Image
    Valevski, Dani
    Kalman, Matan
    Molad, Eyal
    Segalis, Eyal
    Matias, Yossi
    Leviathan, Yaniv
    ACM TRANSACTIONS ON GRAPHICS, 2023, 42 (04):
  • [49] Unsupervised Prompt Tuning for Text-Driven Object Detection
    He, Weizhen
    Chen, Weijie
    Chen, Binbin
    Yang, Shicai
    Xie, Di
    Lin, Luojun
    Qi, Donglian
    Zhuang, Yueting
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 2651 - 2661
  • [50] Exploring Text-Driven Approaches for Online Action Detection
    Benavent-Lledo, Manuel
    Mulero-Perez, David
    Ortiz-Perez, David
    Garcia-Rodriguez, Jose
    Orts-Escolano, Sergio
    BIOINSPIRED SYSTEMS FOR TRANSLATIONAL APPLICATIONS: FROM ROBOTICS TO SOCIAL ENGINEERING, PT II, IWINAC 2024, 2024, 14675 : 55 - 64