FeCo2O4@CNT/PVDF catalytic spheres as peroxymonosulfate activator for levofloxacin decontamination: Catalytic mechanism, ecotoxicity evolution and degradation pathways

被引:8
|
作者
Cao, Dongran [1 ]
Li, Yunhe [1 ]
Xia, Qi [1 ]
Man, Zhihao [1 ]
Wang, Ce [1 ]
Hou, Yilong [1 ]
Shang, Jiangwei [1 ,2 ]
Cheng, Xiuwen [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Environm Pollut Predict & Control Gansu Pr, Lanzhou 730000, Peoples R China
[2] Yili Normal Univ, Sch Resources & Environm, Key Lab Pollutant Chem & Environm Treatment, Yining 835000, Peoples R China
基金
中国国家自然科学基金;
关键词
Catalytic spheres; Peroxymonosulfate; Levofloxacin; PVDF composite; Toxicity assessment; ORGANIC CONTAMINANTS; ADVANCED OXIDATION; HETEROGENEOUS ACTIVATION; WASTE-WATER; SULFATE; RADICALS; PERFORMANCE; PERSULFATE; GENERATION; MEMBRANES;
D O I
10.1016/j.cej.2024.148628
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) for antibiotics removal in aqueous environments are now widely investigated, but the separation of the powdered catalysts from the water at the end of reaction is a major problem that hinders the large-scale application of PMS-based catalytic systems. In this work, based on the synthesis of FeCo2O4@CNT, the FeCo2O4@CNT/polyvinylidene fluoride (PVDF) catalytic spheres (CSs) with a diameter of 3 mm was further fabricated by phase transition method, which as peroxymonosulfate activator not only could remove 95.68 % of LVF (10 mg/L) within 60 min, but also could be easily separated from water. The various characterization results show that FeCo2O4@CNT is mainly distributed in the interior of CSs, LVF and PMS enter the interior through the surface pore structure of CSs and undergo oxidation reactions. The non-free radical pathway coupled with radical pathway contributed to the degradation of LVF where the 1O2 was the major ROS. Meanwhile, the possible degradation pathways of LVF were proposed based on the identification by LC-MS for intermediates and the Toxicity Estimation Software Tool (T. E. S. T) was adopted to evaluate their ecotoxicity evolution. The degradation efficiency of catalytic sphere system for LVF can still be maintained at about 80 % after 20 h of continuous reaction or 5 cycles batch experiments, demonstrating the stability and recoverability of CSs. In addition, simple aqueous cleaning and subsequent standing treatment could help CSs recover to the original catalytic level. Thus, this work provides a promising material for the future wastewater treatment.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Heterogeneous catalytic degradation of organic pollutants by peroxymonosulfate activated with nitrogen doped graphene oxide loaded CuFe2O4
    Li, Zhuoqian
    Ma, Shuanglong
    Xu, Shengjun
    Fu, Haichao
    Li, Yi
    Zhao, Peng
    Meng, Qingxiang
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2019, 577 : 202 - 212
  • [42] Mechanistic Investigation of Rapid Catalytic Degradation of Acetaminophen Using Electrochemical-Induced CoFe2O4 by Activation of Peroxymonosulfate
    Bin, Wang
    Wang, Zhenjun
    NANO, 2025, 20 (01)
  • [43] Heterogeneous catalytic degradation of phenol by CuFe2O4/Bi12O15Cl6 photocatalyst activated peroxymonosulfate
    Jia, Xinyu
    Zhang, Jinhui
    Huang, Qinglin
    Xiong, Chunyu
    Ji, Haixia
    Ren, Qifang
    Huang, Jing
    Chen, Shaohua
    Jin, Zhen
    Chen, Jing
    Guo, Wanmi
    Ge, Yao
    Ding, Yi
    MATERIALS RESEARCH BULLETIN, 2023, 167
  • [44] Enhanced Catalytic Degradation of Acid Orange 7 Dye by Peroxymonosulfate on Co3O4 Promoted by Bi2O3
    Ivanova-Kolcheva, Vanina
    Sygellou, Labrini
    Stoyanova, Maria
    ACTA CHIMICA SLOVENICA, 2020, 67 (02) : 609 - 621
  • [45] Heterogeneous activation of peroxymonosulfate by magnetic hybrid CuFe2O4@N-rGO for excellent sulfamethoxazole degradation: Interaction of CuFe2O4 with N-rGO and synergistic catalytic mechanism
    Jia, Yifan
    Yang, Kunlun
    Zhang, Zengshuai
    Gu, Peng
    Liu, Shiguang
    Li, Manman
    Wang, Xiaorui
    Yin, Yijang
    Zhang, Zhaochang
    Wang, Tao
    Miao, Hengfeng
    CHEMOSPHERE, 2023, 313
  • [46] Catalytic degradation and mineralization mechanism of 4-chlorophenol oxidized by phosphomolybdic acid/H2O2
    Lei, Min
    Gao, Qian
    Zhou, Kemeng
    Gogoi, Parikshit
    Liu, Jing
    Wang, Jiabao
    Song, Hainong
    Wang, Shuangfei
    Liu, Xinliang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 257
  • [47] Oxygen-vacancies rich CuFe2O4 catalyst as efficient peroxymonosulfate activator for enhanced oxytetracycline degradation: Performance and mechanism
    Deng, Tian
    He, Haonan
    Zeng, Li
    Wang, Hongbin
    Zou, Qinghua
    Gong, Xiaobo
    Sun, Mingchao
    Liu, Yong
    Zhao, Junfeng
    CHEMICAL ENGINEERING SCIENCE, 2024, 291
  • [48] Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2,4-dichlorophenoxyacetic acid in water: Efficiency, mechanism and degradation pathways
    Zuo, Jinxiang
    Wang, Binyuan
    Kang, Jing
    Yan, Pengwei
    Shen, Jimin
    Wang, Shuyu
    Fu, Donglei
    Zhu, Xinwei
    She, Tianhao
    Zhao, Shengxin
    Chen, Zhonglin
    Separation and Purification Technology, 2022, 297
  • [49] Activation of peroxymonosulfate by nanoscaled NiFe2O4 magnetic particles for the degradation of 2,4-dichlorophenoxyacetic acid in water: Efficiency, mechanism and degradation pathways
    Zuo, Jinxiang
    Wang, Binyuan
    Kang, Jing
    Yan, Pengwei
    Shen, Jimin
    Wang, Shuyu
    Fu, Donglei
    Zhu, Xinwei
    She, Tianhao
    Zhao, Shengxin
    Chen, Zhonglin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 297
  • [50] An efficient heterogeneous catalyst of FeCo2O4/g-C3N4 composite for catalytic peroxymonosulfate oxidation of organic pollutants under visible light
    Zhao, Lei
    Yang, Dan
    Ma, Lili
    Feng, Xueting
    Ding, Hanming
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2021, 610