FeCo2O4@CNT/PVDF catalytic spheres as peroxymonosulfate activator for levofloxacin decontamination: Catalytic mechanism, ecotoxicity evolution and degradation pathways

被引:8
|
作者
Cao, Dongran [1 ]
Li, Yunhe [1 ]
Xia, Qi [1 ]
Man, Zhihao [1 ]
Wang, Ce [1 ]
Hou, Yilong [1 ]
Shang, Jiangwei [1 ,2 ]
Cheng, Xiuwen [1 ,2 ]
机构
[1] Lanzhou Univ, Coll Earth & Environm Sci, Key Lab Environm Pollut Predict & Control Gansu Pr, Lanzhou 730000, Peoples R China
[2] Yili Normal Univ, Sch Resources & Environm, Key Lab Pollutant Chem & Environm Treatment, Yining 835000, Peoples R China
基金
中国国家自然科学基金;
关键词
Catalytic spheres; Peroxymonosulfate; Levofloxacin; PVDF composite; Toxicity assessment; ORGANIC CONTAMINANTS; ADVANCED OXIDATION; HETEROGENEOUS ACTIVATION; WASTE-WATER; SULFATE; RADICALS; PERFORMANCE; PERSULFATE; GENERATION; MEMBRANES;
D O I
10.1016/j.cej.2024.148628
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Peroxymonosulfate (PMS)-based advanced oxidation processes (AOPs) for antibiotics removal in aqueous environments are now widely investigated, but the separation of the powdered catalysts from the water at the end of reaction is a major problem that hinders the large-scale application of PMS-based catalytic systems. In this work, based on the synthesis of FeCo2O4@CNT, the FeCo2O4@CNT/polyvinylidene fluoride (PVDF) catalytic spheres (CSs) with a diameter of 3 mm was further fabricated by phase transition method, which as peroxymonosulfate activator not only could remove 95.68 % of LVF (10 mg/L) within 60 min, but also could be easily separated from water. The various characterization results show that FeCo2O4@CNT is mainly distributed in the interior of CSs, LVF and PMS enter the interior through the surface pore structure of CSs and undergo oxidation reactions. The non-free radical pathway coupled with radical pathway contributed to the degradation of LVF where the 1O2 was the major ROS. Meanwhile, the possible degradation pathways of LVF were proposed based on the identification by LC-MS for intermediates and the Toxicity Estimation Software Tool (T. E. S. T) was adopted to evaluate their ecotoxicity evolution. The degradation efficiency of catalytic sphere system for LVF can still be maintained at about 80 % after 20 h of continuous reaction or 5 cycles batch experiments, demonstrating the stability and recoverability of CSs. In addition, simple aqueous cleaning and subsequent standing treatment could help CSs recover to the original catalytic level. Thus, this work provides a promising material for the future wastewater treatment.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Insights into the performance, mechanism, and ecotoxicity of levofloxacin degradation in CoFe2O4 catalytic peroxymonosulfate process
    Liu, Lili
    Zhan, Rui
    Zhang, Meng
    Li, Jianan
    Wang, Zhiping
    Mi, Haosheng
    Zhang, Yunxiao
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (03):
  • [2] Efficient removal of levofloxacin by FeCo2O4@C-REC activated peroxymonosulfate: Performance and mechanism
    Zhao, Bai-Hang
    Zhang, Bao-Yu
    Zhang, Bing-Lin
    Zhang, Jing
    Wang, Chun
    Li, Ye
    JOURNAL OF WATER PROCESS ENGINEERING, 2025, 69
  • [3] Synergism of adsorption and catalytic degradation of levofloxacin by exfoliated vermiculite anchored with CoFe2O4 particles activating peroxymonosulfate
    Wang, Chun
    Zhao, Bai-Hang
    Zhang, Bao-Yu
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2025, 13 (01):
  • [4] Degradation of organic pollutants by NiFe2O4/peroxymonosulfate: efficiency, influential factors and catalytic mechanism
    Wang, Zilin
    Du, Yunchen
    Liu, Yulei
    Zou, Bohua
    Xiao, Jiayue
    Ma, Jun
    RSC ADVANCES, 2016, 6 (13) : 11040 - 11048
  • [5] Improving azo dyes degradation by CoFe2O4-activated peroxymonosulfate: Performance, degradation mechanism, and ecotoxicity assessment
    Deng, Qiao
    Lu, Xinxin
    Jiang, Hongbin
    Zhao, Xiaojing
    Wei, Dan
    Xu, Jingjing
    Wang, Xu
    JOURNAL OF MOLECULAR STRUCTURE, 2024, 1318
  • [6] Degradation of ciprofloxacin in sludge by peroxymonosulfate activated by CoFe2O4: Performance, degradation pathways and mechanism
    Liu, Qiyao
    Sang, Wenjiao
    Xu, Xinyang
    Li, Min
    Zou, Lei
    Gan, Fangmao
    PROCESS SAFETY AND ENVIRONMENTAL PROTECTION, 2025, 194 : 652 - 666
  • [7] Three-dimensional rGO/CNT/g-C3N4 macro discs as an efficient peroxymonosulfate activator for catalytic degradation of sulfamethoxazole
    Hirani, Rajan Arjan Kalyan
    Hannan, Abdul
    Rafique, Nasir
    Shi, Lei
    Tian, Wenjie
    Wang, Haitao
    Sun, Hongqi
    JOURNAL OF HAZARDOUS MATERIALS, 2023, 460
  • [8] Catalytic degradation of ciprofloxacin by magnetic CuS/Fe2O3/Mn2O3 nanocomposite activated peroxymonosulfate: Influence factors, degradation pathways and reaction mechanism
    Huang, Yan
    Nengzi, Li-chao
    Zhang, Xinyi
    Gou, Jianfeng
    Gao, Yingjie
    Zhu, Guixian
    Cheng, Qingfeng
    Cheng, Xiuwen
    CHEMICAL ENGINEERING JOURNAL, 2020, 388
  • [10] Activation of peroxymonosulfate by CuFe2O4-CoFe2O4 composite catalyst for efficient bisphenol a degradation: Synthesis, catalytic mechanism and products toxicity assessment
    Li, Zhiying
    Wang, Fei
    Zhang, Yimei
    Lai, Yuxian
    Fang, Qinglu
    Duan, Yaxiao
    CHEMICAL ENGINEERING JOURNAL, 2021, 423