Ensemble Learning Approach for Short-term Energy Consumption Prediction

被引:1
|
作者
Reddy, Sujan A. [1 ]
Akashdeep, S. [1 ]
Harshvardhan, R. [1 ]
Kamath, Sowmya S. [1 ]
机构
[1] Natl Inst Technol Karnataka, Dept Informat Technol, Surathkal, Karnataka, India
关键词
Energy forecasting; Machine learning; Ensemble learning; Predictive analytics;
D O I
10.1145/3493700.3493743
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predicting electricity consumption accurately is crucial for garnering insights and potential trends into energy consumption for effective resource management. Due to the linearity/non-linearity in usage patterns, electricity consumption prediction is challenging and cannot be adequately solved by using a single model. In this paper, we propose ensemble learning based approaches for short-term electricity consumption on an open dataset. The ensemble model is built on the combined predictions of supervised machine learning and deep learning base models. Experimental validation showed that the proposed ensemble model is more accurate and decreases the training time of the second layer of the ensemble by a factor close to ten, compared to the state-of-the-art. We observed a reduction of approximately 34% in the Root mean squared error for the same size of historical window.
引用
收藏
页码:284 / 285
页数:2
相关论文
共 50 条
  • [31] Short-term prediction of energy consumption of air conditioners based on weather forecast
    Hoaison Nguyen
    Makino, Yoshiki
    Lim, Yuto
    Tan, Yasuo
    2017 4TH NAFOSTED CONFERENCE ON INFORMATION AND COMPUTER SCIENCE (NICS), 2017, : 195 - 200
  • [32] Stacking Deep learning and Machine learning models for short-term energy consumption forecasting
    Reddy, A. Sujan
    Akashdeep, S.
    Harshvardhan, R.
    Kamath, S. Sowmya
    ADVANCED ENGINEERING INFORMATICS, 2022, 52
  • [33] An Ensemble Learning Approach for Short-Term Load Forecasting of Grid-Connected Multi-energy Microgrid
    Tan, Mao
    Jin, Ji-Cheng
    Su, Yong-Xin
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 497 - 502
  • [34] Short-Term Wind Power Prediction Based on a Modified Stacking Ensemble Learning Algorithm
    Yang, Yankun
    Li, Yuling
    Cheng, Lin
    Yang, Shiyou
    SUSTAINABILITY, 2024, 16 (14)
  • [35] Study on short-term photovoltaic power prediction model based on the Stacking ensemble learning
    Guo, Xifeng
    Gao, Ye
    Zheng, Di
    Ning, Yi
    Zhao, Qiannan
    ENERGY REPORTS, 2020, 6 (06) : 1424 - 1431
  • [36] Short-Term Speed Prediction on Urban Highways by Ensemble Learning with Feature Subset Selection
    Rasyidi, Mohammad Arif
    Ryu, Kwang Ryel
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, DASFAA 2014, 2014, 8505 : 46 - 60
  • [37] Short-Term Prediction of Traffic State for a Rural Road Applying Ensemble Learning Process
    Rasaizadi, Arash
    Seyedabrishami, Seyedehsan
    Abadeh, Mohammad Saniee
    JOURNAL OF ADVANCED TRANSPORTATION, 2021, 2021
  • [38] Short-Term Travel Time Prediction: A Spatiotemporal Deep Learning Approach
    Ran, Xiangdong
    Shan, Zhiguang
    Shi, Yong
    Lin, Chuang
    INTERNATIONAL JOURNAL OF INFORMATION TECHNOLOGY & DECISION MAKING, 2019, 18 (04) : 1087 - 1111
  • [39] A Deep Learning Approach for Short-Term Airport Traffic Flow Prediction
    Yan, Zhen
    Yang, Hongyu
    Li, Fan
    Lin, Yi
    AEROSPACE, 2022, 9 (01)
  • [40] A Novel Prediction Approach for Short-Term Renewable Energy Consumption in China Based on Improved Gaussian Process Regression
    Huang, Yuansheng
    Yang, Lei
    Gao, Chong
    Jiang, Yuqing
    Dong, Yulin
    ENERGIES, 2019, 12 (21)