Influence maximization under equilibrious groups in social networks

被引:0
|
作者
Li, Runzhi [1 ]
Zhu, Jianming [1 ]
Wang, Guoqing [2 ]
机构
[1] Univ Chinese Acad Sci, Sch Emergency Management Sci & Engn, Beijing, Peoples R China
[2] Univ Chinese Acad Sci, Sch Engn Sci, Beijing, Peoples R China
来源
JOURNAL OF SUPERCOMPUTING | 2024年 / 80卷 / 15期
基金
中国国家自然科学基金;
关键词
Equilibrious group; Entropy; Influence maximization; Social network; UNCERTAINTY; BARRIERS;
D O I
10.1007/s11227-024-06300-9
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In a market, there are many groups caused by geographical location or other reasons, and consumers in groups have their own brand preferences for a type of products. The diversity of consumers' brand preferences will avoid the phenomenon of brand simplification and monopoly caused by consistent brand reference of consumers, and to some extent, promote the prosperity and development of various brands in each group. For brand diversification in a market, we hope the brand preferences of consumers in each groups are as equilibrious as possible, so Influence Maximization under Equilibrious Groups (IMEG) is proposed to select k nodes to maximize the number of equilibrious groups after information diffusion. This paper proves that the IMEG is NP-hard, and computing the objective function is #P-hard. It also proves that the objective function is neither submodular nor supermodular under Independent Cascade (IC) model and Linear Threshold (LT) model. Then, the Equilibrious Groups Maximization Solution (EGMS) algorithm is presented to solve our problem. And by comparing with baseline algorithms using different datasets (dolphins, wildbird, weaver and hamsterster), it can be found that the EGMS has obvious advantages in time complexity and spatial complexity. In particular, the running time of EGMS is about 3.7x10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$3.7\times 10<^>{-2}$$\end{document}, 2.4x10-2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$2.4\times 10<^>{-2}$$\end{document}, 1.1x10-1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.1\times 10<^>{-1}$$\end{document} and 1.8x10-3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$1.8\times 10<^>{-3}$$\end{document} times that of the fastest baseline algorithm in dolphins, wildbird, weaver and hamsterster respectively. And the experiments in small-world, scale-free, random and regular network verify the robustness of EGMS with the varying parameters, such as the number of nodes, the probability of adding edges and the number of adjacencies.
引用
收藏
页码:22190 / 22212
页数:23
相关论文
共 50 条
  • [1] Profit Maximization Under Group Influence Model in Social Networks
    Zhu, Jianming
    Ghosh, Smita
    Wu, Weili
    Gao, Chuangen
    [J]. COMPUTATIONAL DATA AND SOCIAL NETWORKS, 2019, 11917 : 108 - 119
  • [2] Social Influence Maximization in Hypergraph in Social Networks
    Zhu, Jianming
    Zhu, Junlei
    Ghosh, Smita
    Wu, Weili
    Yuan, Jing
    [J]. IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2019, 6 (04): : 801 - 811
  • [3] Influence Maximization under Fairness Budget Distribution in Online Social Networks
    Bich-Ngan T Nguyen
    Phuong N H Pham
    Van-Vang Le
    Snasel, Vaclav
    [J]. MATHEMATICS, 2022, 10 (22)
  • [4] Influence maximization in social networks under Deterministic Linear Threshold Model
    Gursoy, Furkan
    Gunnec, Dilek
    [J]. KNOWLEDGE-BASED SYSTEMS, 2018, 161 : 111 - 123
  • [5] Competitive Influence Maximization on Online Social Networks under Cost Constraint
    Chen, Bo-Lun
    Sheng, Yi-Yun
    Ji, Min
    Liu, Ji-Wei
    Yu, Yong-Tao
    Zhang, Yue
    [J]. KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2021, 15 (04): : 1263 - 1274
  • [6] On Modeling Influence Maximization in Social Activity Networks under General Settings
    Wang, Rui
    Li, Yongkun
    Lin, Shuai
    Xie, Hong
    Xu, Yinlong
    Lui, John C. S.
    [J]. ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2021, 15 (06)
  • [7] Influence Maximization in Online Social Networks
    Aslay, Cigdem
    Lakshmanan, Laks V. S.
    Lu, Wei
    Xiao, Xiaokui
    [J]. WSDM'18: PROCEEDINGS OF THE ELEVENTH ACM INTERNATIONAL CONFERENCE ON WEB SEARCH AND DATA MINING, 2018, : 775 - 776
  • [8] Structural Influence Maximization in Social Networks
    Jing, Dong
    Liu, Ting
    [J]. 2019 INTERNATIONAL CONFERENCE ON INTERNET OF THINGS (ITHINGS) AND IEEE GREEN COMPUTING AND COMMUNICATIONS (GREENCOM) AND IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING (CPSCOM) AND IEEE SMART DATA (SMARTDATA), 2019, : 1088 - 1095
  • [9] Personalized Influence Maximization on Social Networks
    Guo, Jing
    Zhang, Peng
    Zhou, Chuan
    Cao, Yanan
    Guo, Li
    [J]. PROCEEDINGS OF THE 22ND ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT (CIKM'13), 2013, : 199 - 208
  • [10] Influence Maximization in Noncooperative Social Networks
    Yang, Yile
    Li, Victor O. K.
    Xu, Kuang
    [J]. 2012 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2012, : 2834 - 2839