A PARAMETERIZED THREE-OPERATOR SPLITTING ALGORITHM FOR NON-CONVEX MINIMIZATION PROBLEMS WITH APPLICATIONS

被引:1
|
作者
Miao, Liuyi [1 ]
Tang, Yuchao [2 ]
Wang, Changlong [3 ]
机构
[1] Nanchang Univ, Dept Math, Nanchang 330031, Jiangxi, Peoples R China
[2] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[3] Xidian Univ, Key Lab Elect Informat Countermeasure & Simulat T, Minist Educ, Xian 710071, Peoples R China
来源
JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS | 2024年 / 8卷 / 03期
关键词
  Image inpainting problems; Low rank matrix recovery; Non-convex minimization; Parame-; terized; Three-operator splitting algorithm; RANK MATRIX RECOVERY; CONVERGENCE; NONSMOOTH; SUM;
D O I
10.23952/jnva.8.2024.3.07
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we propose a parameterized three-operator splitting algorithm to solve nonconvex minimization problems with the sum of three non-convex functions, where two of them have Lipschitz continuous gradients. We establish the convergence of the proposed algorithm under the Kurdykaojasiewicz assumption by constructing a suitable energy function with a non-increasing property. As applications, we employ the proposed algorithm to solve low-rank matrix recovery and image inpainting problems. Numerical results demonstrate the efficiency and effectiveness of the proposed algorithm compared to other algorithms.
引用
收藏
页码:451 / 471
页数:21
相关论文
共 50 条
  • [41] Non-convex minimization -: The case of vector fields
    Brüning, E
    PARTIAL DIFFERENTIAL EQUATIONS AND SPECTRAL THEORY, 2001, 126 : 17 - 23
  • [42] Efficient Regret Minimization in Non-Convex Games
    Hazan, Elad
    Singh, Karan
    Zhang, Cyril
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [43] An Algorithm for Solving Common Points of Convex Minimization Problems with Applications
    Hanjing, Adisak
    Pholasa, Nattawut
    Suantai, Suthep
    SYMMETRY-BASEL, 2023, 15 (01):
  • [44] Mini-Batch Stochastic Three-Operator Splitting for Distributed Optimization
    Franci, Barbara
    Staudigl, Mathias
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 2882 - 2887
  • [45] Extrapolated Plug-and-Play Three-Operator Splitting Methods for Nonconvex Optimization with Applications to Image Restoration
    Wu, Zhongming
    Huang, Chaoyan
    Zeng, Tieyong
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (02): : 1145 - 1181
  • [46] Penalty boundary sequential convex programming algorithm for non-convex optimal control problems
    Zhang, Zhe
    Jin, Gumin
    Li, Jianxun
    ISA TRANSACTIONS, 2018, 72 : 229 - 244
  • [47] Non-Convex Feature Learning via Operator
    Kong, Deguang
    Ding, Chris
    PROCEEDINGS OF THE TWENTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2014, : 1918 - 1924
  • [48] Sufficient Global Optimality Conditions for Non-convex Quadratic Minimization Problems With Box Constraints
    V. Jeyakumar
    A. M. Rubinov
    Z. Y. Wu
    Journal of Global Optimization, 2006, 36 : 471 - 481
  • [49] Sufficient global optimality conditions for non-convex quadratic minimization problems with box constraints
    Jeyakumar, V.
    Rubinov, A. M.
    Wu, Z. Y.
    JOURNAL OF GLOBAL OPTIMIZATION, 2006, 36 (03) : 471 - 481
  • [50] A Global Optimization Algorithm for Non-Convex Mixed-Integer Problems
    Gergel, Victor
    Barkalov, Konstantin
    Lebedev, Ilya
    LEARNING AND INTELLIGENT OPTIMIZATION, LION 12, 2019, 11353 : 78 - 81