Salinity-driven nitrogen removal and bacteria community compositions in microbial fuel cell–integrated constructed wetlands

被引:0
|
作者
Xu D. [1 ,2 ]
Huang M. [1 ]
Xu L. [1 ]
Li Z. [1 ]
机构
[1] State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang
[2] State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan
关键词
Bacteria community; Constructed wetland; Microbial fuel cell; Nitrogen removal; Salinity gradients;
D O I
10.1007/s11356-024-34275-w
中图分类号
学科分类号
摘要
The effects of salinity gradients (500–4000 mg·L−1 NaCl) on electricity generation, nitrogen removal, and microbial community were investigated in a constructed wetland-microbial fuel cell (CW-MFC) system. The result showed that power density significantly increased from 7.77 mW m−2 to a peak of 34.27 mW m−2 as salinity rose, indicating enhanced electron transfer capabilities under saline conditions. At a moderate salinity level of 2000 mg·L−1 NaCl, the removal efficiencies of NH4+–N and TN reached their maximum at 77.34 ± 7.61% and 48.45 ± 8.14%, respectively. This could be attributed to increased microbial activity and the presence of critical nitrogen-removal organisms, such as Nitrospira and unclassified Betaproteobacteria at the anode, as well as Bacillus, unclassified Rhizobiales, Sphingobium, and Simplicispira at the cathode. Additionally, this salinity corresponded with the highest abundance of Exiguobacterium (3.92%), a potential electrogenic bacterium, particularly at the cathode. Other microorganisms, including Geobacter, unclassified Planctomycetaceae, and Thauera, adapted well to elevated salinity, thereby enhancing both electricity generation and nitrogen removal. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024.
引用
收藏
页码:47189 / 47200
页数:11
相关论文
共 50 条
  • [31] Microbial community dynamics associated with veterinary antibiotics removal in constructed wetlands microcosms
    Fernandes, Joana P.
    Almeida, C. Marisa R.
    Pereira, Ana C.
    Ribeiro, Iolanda L.
    Reis, Izabela
    Carvalho, Pedro
    Basto, M. Clara P.
    Mucha, Ana P.
    BIORESOURCE TECHNOLOGY, 2015, 182 : 26 - 33
  • [32] Microbial response to nitrogen removal driven by combined iron and biomass in subsurface flow constructed wetlands with plants of different ages
    Gu, Xushun
    Peng, Yuanyuan
    Yan, Pan
    Fan, Yuanyuan
    Zhang, Manping
    Sun, Shanshan
    He, Shengbing
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 875
  • [33] Removal efficiency and balance of nitrogen in a recirculating aquaculture system integrated with constructed wetlands
    Zhong, Fei
    Liang, Wei
    Yu, Tao
    Cheng, Shui P.
    He, Feng
    Wu, Zhen B.
    JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH PART A-TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING, 2011, 46 (07): : 789 - 794
  • [34] REMOVAL EFFICIENCY OF NITROGEN AND PHOSPHORUS IN INTEGRATED CONSTRUCTED LAKE-SIDE WETLANDS
    Gao, Haiying
    Deng, Lin
    Zhu, Fangtong
    FRESENIUS ENVIRONMENTAL BULLETIN, 2011, 20 (10A): : 2756 - 2763
  • [35] Seasonal variations of pollutants removal and microbial activity in integrated constructed wetland-microbial fuel cell systems
    Wang, Xiaoou
    Tian, Yimei
    WATER REUSE, 2021, 11 (02) : 312 - 328
  • [36] Studies on Cr (VI) removal by constructed wetland integrated microbial fuel cell: Effect of electrodes
    Kumari, Divyani
    Dutta, Kasturi
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (04):
  • [37] Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands
    Li, Dan
    Chu, Zhaosheng
    Zeng, Zhenzhong
    Matthew, Sima
    Huang, Minsheng
    Zheng, Binghui
    Science of the Total Environment, 2021, 797
  • [38] The salinity effects on the performance of a constructed wetland-microbial fuel cell
    Villasenor Camacho, J.
    Rodriguez Romero, L.
    Fernandez Marchante, C. M.
    Fernandez Morales, F. J.
    Rodrigo Rodrigo, M. A.
    ECOLOGICAL ENGINEERING, 2017, 107 : 1 - 7
  • [39] Response of microbes to biochar strengthen nitrogen removal in subsurface flow constructed wetlands: Microbial community structure and metabolite characteristics
    Deng, Chaoren
    Huang, Lei
    Liang, Yinkun
    Xiang, Hongyu
    Jiang, Jie
    Wang, Qinghua
    Hou, Jie
    Chen, Yucheng
    SCIENCE OF THE TOTAL ENVIRONMENT, 2019, 694
  • [40] Effects of design parameters, microbial community and nitrogen removal on the field-scale multi-pond constructed wetlands
    Li, Dan
    Chu, Zhaosheng
    Zeng, Zhenzhong
    Sima, Matthew
    Huang, Minsheng
    Zheng, Binghui
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 797