The role of Fe(IV) in the zero-valent iron biochar activated persulfate system for treatment of contaminants of emerging concern

被引:19
|
作者
Gong, Wenwen [1 ]
He, Dandan [2 ]
Wang, Xiao [2 ]
Yan, Yuting [2 ]
Dionysiou, Dionysios D. [3 ]
Blaney, Lee [4 ]
Peng, Guilong [2 ,5 ]
机构
[1] Beijing Acad Agr & Forestry Sci, Inst Qual Stand & Testing Technol, Beijing 100097, Peoples R China
[2] Southwest Univ, Coll Sericulture Text & Biomass Sci, State Key Lab Resource Insects, Chongqing 400715, Peoples R China
[3] Univ Cincinnati, Dept Chem & Environm Engn, Environm Engn & Sci Program, Cincinnati, OH 45221 USA
[4] Univ Maryland Baltimore Cty, Dept Chem Biochem & Environm Engn, Baltimore, MD 21250 USA
[5] Southwest Univ, Yibin Acad, Yibin, Peoples R China
关键词
PMSO; Fe(IV); Ferryl iron; Advanced oxidation process; Zero-valent iron; Biochar; ATOM TRANSFER; OXIDATION; TRANSFORMATION; REMOVAL; DEGRADATION; COMPOSITES; MECHANISMS; RADICALS; ACID;
D O I
10.1016/j.cej.2024.150553
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
In this paper, Fe(IV) was analyzed in the zero-valent iron biochar (ZVI-BC) activated persulfate (PS) process with methyl phenyl sulfoxide (PMSO) as the probe compound. Without a reaction terminator, PMSO degradation continued during the sample holding time, resulting in significant errors in the kinetics analysis. When 1 mM NaNO2, 1 mM NH2OH, 10 mM Na2S2O3, or 10 mM dimethyl sulfoxide were used as terminators, the concentrations of PMSO and its oxidation product, methyl phenyl sulfone (PMSO2), were effectively maintained without changes during the sample holding period. Furthermore, the terminators did not interfere with PMSO or PMSO2 analysis by high performance liquid chromatography. In addition to Fe(IV), free radical (i.e., SO4 center dot-, (OH)-O-center dot, O-2(center dot-)) and nonradical (i.e., O-1(2)) reactive species were also involved in the ZVI-BC/PS system; however, Fe(IV) was the predominant reactive species. Organic contaminants with electron-donating moieties rapidly reacted with Fe (IV), and the relative contribution of Fe(IV) to overall contaminant degradation decreased as the solution pH was increased. Overall, this study provided new insights into the quantitative analysis of Fe(IV) in the ZVI-BC/PS system and its application to treatment of organic contaminants in solutions with variable water quality.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Research Progress on the Degradation of Organic Pollutants in Water by Activated Persulfate Using Biochar-Loaded Nano Zero-Valent Iron
    Lu, Hai
    Wang, Xiaoyan
    Cong, Qiao
    Chen, Xinglin
    Li, Qingpo
    Li, Xueqi
    Zhong, Shuang
    Deng, Huan
    Yan, Bojiao
    MOLECULES, 2024, 29 (05):
  • [32] Zero-valent iron/persulfate(Fe0/PS) oxidation acetaminophen in water
    Deng, J.
    Shao, Y.
    Gao, N.
    Deng, Y.
    Tan, C.
    Zhou, S.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2014, 11 (04) : 881 - 890
  • [33] Mechanistic insights into adsorptive and oxidative removal of monochlorobenzene in biochar-supported nanoscale zero-valent iron/persulfate system
    Yang, Lei
    Chen, Yun
    Ouyang, Da
    Yan, Jingchun
    Qian, Linbo
    Han, Lu
    Chen, Mengfang
    Li, Jing
    Gu, Mingyue
    CHEMICAL ENGINEERING JOURNAL, 2020, 400
  • [34] Removal of phenol from aqueous solution using persulfate activated with nanoscale zero-valent iron
    Tunc, Muslun Sara
    Tepe, Ozlem
    DESALINATION AND WATER TREATMENT, 2017, 74 : 269 - 277
  • [35] Review on the degradation of chlorinated hydrocarbons by persulfate activated with zero-valent iron-based materials
    Chen, Zhiguo
    Cao, Wenqing
    Bai, He
    Zhang, Rong
    Liu, Yiyun
    Li, Yan
    Song, Jingpeng
    Liu, Juncheng
    Ren, Gengbo
    WATER SCIENCE AND TECHNOLOGY, 2023, 87 (03) : 761 - 782
  • [36] Isotope fractionation of diethyl phthalate during oxidation degradation by persulfate activated with zero-valent iron
    Min, Ning
    Yao, Jun
    Wu, Langping
    Amde, Meseret
    Richnow, Hans Hermann
    Chen, Yafei
    Wu, Chaochang
    Li, Hao
    CHEMICAL ENGINEERING JOURNAL, 2022, 435
  • [37] Degradation of Norfloxacin in an Aqueous Solution by the Nanoscale Zero-Valent Iron-Activated Persulfate Process
    Zhang, Yanchang
    Zhao, Lin
    Yang, Yongkui
    Sun, Peizhe
    JOURNAL OF NANOMATERIALS, 2020, 2020
  • [38] Kinetics of zero-valent iron-activated persulfate for methylparaben degradation and the promotion of Cl-
    Li, Xinxin
    Song, Chuang
    Sun, Beibei
    Gao, Jingsi
    Liu, Yanping
    Zhu, Jia
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2022, 321
  • [39] UV and Zero-Valent Iron (ZVI) Activated Continuous Flow Persulfate Oxidation of Municipal Wastewater
    Kanafin, Yerkanat N. N.
    Abdirova, Perizat
    Kanafina, Dinara
    Arkhangelsky, Elizabeth
    Kyzas, George Z. Z.
    Poulopoulos, Stavros G. G.
    CATALYSTS, 2023, 13 (01)
  • [40] Degradation of amaranth by persulfate activated with zero-valent iron: influencing factors, response surface modeling
    Yu, Changye
    Lu, Xian
    Lu, Jinyu
    Zhang, Yinjiang
    SN APPLIED SCIENCES, 2023, 5 (01):