Robust Adaptive Control Barrier Functions for Input-Affine Systems: Application to Uncertain Manipulator Safety Constraints

被引:1
|
作者
Zeng, Danping [1 ,2 ]
Jiang, Yiming [1 ,2 ]
Wang, Yaonan [2 ,3 ]
Zhang, Hui [1 ,2 ]
Feng, Yun [2 ,3 ]
机构
[1] Hunan Univ, Sch Robot, Changsha 410082, Peoples R China
[2] Hunan Univ, Natl Engn Res Ctr Robot Visual Percept & Control T, Changsha 410082, Peoples R China
[3] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
来源
关键词
Control barrier functions; manipulator systems; robust adaptive control; adaptive optimal control; LEARNING ROBOT CONTROL; QUADRATIC PROGRAMS;
D O I
10.1109/LCSYS.2023.3329518
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Most existing control barrier functions-based control strategies for manipulator systems require a perfect knowledge of the model or consider the worst-case uncertainties. To solve this problem, a composite learning-enhanced adaptive optimal control approach is first proposed for manipulator systems, which achieves constraint satisfactions of joint positions and velocities in the presence of model uncertainties, and leveraging historical data online reduces uncertainties in estimated parameters. Technically, to ensure constraint satisfactions, a series of zeroing control barrier functions are designed, based on which the conditions that guarantee the forward invariance of the constraint-admissible set are derived. Then, a data-driven approach is utilized to reduce the conservatism of the robust adaptive control barrier functions by tightening the bounds of the unknown parameters. A manipulator system illustrates the effectiveness of the proposed method.
引用
收藏
页码:279 / 284
页数:6
相关论文
共 50 条
  • [31] Tube-Based Internal Model Control of Minimum-Phase Input-Affine MIMO Systems under Input Constraints
    Ben Jemaa, K.
    Kotman, P.
    Reimann, S.
    Graichen, K.
    [J]. IFAC PAPERSONLINE, 2020, 53 (02): : 1677 - 1683
  • [32] Adaptive tracking control of uncertain MIMO nonlinear systems with input constraints
    Chen, Mou
    Ge, Shuzhi Sam
    Ren, Beibei
    [J]. AUTOMATICA, 2011, 47 (03) : 452 - 465
  • [33] Robust adaptive safety control of uncertain nonlinear systems and its application to differential robots
    Han, Xingzhe
    Long, Lijun
    [J]. INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2024, 34 (14) : 9355 - 9373
  • [34] A Robust Optimal Nonlinear Control for Uncertain Systems: Application to a Robot Manipulator
    Teodorescu, C. S.
    Vandenplas, S.
    [J]. 2015 IEEE CONFERENCE ON CONTROL AND APPLICATIONS (CCA 2015), 2015, : 953 - 959
  • [35] Adaptive–adaptive robust boundary control for uncertain mechanical systems with inequality constraints
    Zongfan Wang
    Guolai Yang
    Xiuye Wang
    Qinqin Sun
    [J]. Nonlinear Dynamics, 2022, 110 : 449 - 466
  • [36] Self-Triggered Robust MPC with ISM for Constrained Nonlinear Input-Affine Systems
    Zhang, Qian
    Shi, Yang
    Wu, Kui
    [J]. 2019 IEEE 28TH INTERNATIONAL SYMPOSIUM ON INDUSTRIAL ELECTRONICS (ISIE), 2019, : 2175 - 2180
  • [37] Event-based feedback control of disturbed input-affine systems
    Stoecker, Christian
    Lunze, Jan
    [J]. ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2014, 94 (04): : 290 - 302
  • [38] Robust adaptive nonlinear control for uncertain control-affine systems and its applications
    Koofigar, Hamid R.
    Hosseinnia, Saeed
    Sheikholeslam, Farid
    [J]. NONLINEAR DYNAMICS, 2009, 56 (1-2) : 13 - 22
  • [39] Robust adaptive nonlinear control for uncertain control-affine systems and its applications
    Hamid R. Koofigar
    Saeed Hosseinnia
    Farid Sheikholeslam
    [J]. Nonlinear Dynamics, 2009, 56 : 13 - 22
  • [40] Policy Optimization Adaptive Dynamic Programming for Optimal Control of Input-Affine Discrete-Time Nonlinear Systems
    Lin, Mingduo
    Zhao, Bo
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2023, 53 (07): : 4339 - 4350