Quantum control of exciton wave functions in 2D semiconductors

被引:9
|
作者
Hu, Jenny [1 ,2 ]
Lorchat, Etienne [3 ]
Chen, Xueqi [1 ,2 ]
Watanabe, Kenji [4 ]
Taniguchi, Takashi [5 ]
Heinz, Tony F. [1 ,2 ]
Murthy, Puneet A. [6 ]
Chervy, Thibault [3 ]
机构
[1] Stanford Univ, Dept Appl Phys, Stanford, CA 94305 USA
[2] SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] NTT Res Inc, Phys & Informat Labs, 940 Stewart Dr, Sunnyvale, CA 94085 USA
[4] Natl Inst Mat Sci, Res Ctr Funct Mat, 1-1 Namiki, Tsukuba 3050044, Japan
[5] Natl Inst Mat Sci, Int Ctr Mat Nanoarchitecton, 1-1 Namiki, Tsukuba, Ibaraki 3050044, Japan
[6] Swiss Fed Inst Technol, Inst Quantum Elect, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
POLARITONS; STATE;
D O I
10.1126/sciadv.adk6369
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Excitons-bound electron-hole pairs-play a central role in light-matter interaction phenomena and are crucial for wide-ranging applications from light harvesting and generation to quantum information processing. A long-standing challenge in solid-state optics has been to achieve precise and scalable control over excitonic motion. We present a technique using nanostructured gate electrodes to create tailored potential landscapes for excitons in 2D semiconductors, enabling in situ wave function shaping at the nanoscale. Our approach forms electrostatic traps for excitons in various geometries, such as quantum dots, rings, and arrays thereof. We show independent spectral tuning of spatially separated quantum dots, achieving degeneracy despite material disorder. Owing to the strong light-matter coupling of excitons in 2D semiconductors, we observe unambiguous signatures of confined exciton wave functions in optical reflection and photoluminescence measurements. This work unlocks possibilities for engineering exciton dynamics and interactions at the nanometer scale, with implications for optoelectronic devices, topological photonics, and quantum nonlinear optics.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Optical logic operation via plasmon-exciton interconversion in 2D semiconductors
    Kim, Jung Ho
    Lee, Jubok
    Kim, Hyun
    Yun, Seok Joon
    Kim, Jeongyong
    Lee, Hyun Seok
    Lee, Young Hee
    SCIENTIFIC REPORTS, 2019, 9 (1)
  • [22] Signatures of quantum chaos in wave functions structure for multi-well 2D potentials
    Berezovoj, VP
    Bolotin, YL
    Cherkaskiy, VA
    PHYSICS LETTERS A, 2004, 323 (3-4) : 218 - 223
  • [23] WAVE-FUNCTIONS OF INDUCED 2D GRAVITY
    NAVARROSALAS, J
    NAVARRO, M
    ALDAYA, V
    PHYSICS LETTERS B, 1993, 318 (02) : 293 - 297
  • [24] Bulk Correlation Functions in 2d Quantum Gravity
    I. K. Kostov
    V. B. Petkova
    Theoretical and Mathematical Physics, 2006, 146 : 108 - 118
  • [25] Bulk correlation functions in 2d quantum gravity
    Kostov, IK
    Petkova, VB
    THEORETICAL AND MATHEMATICAL PHYSICS, 2006, 146 (01) : 108 - 118
  • [26] Icosahedral quantum dots and 2D quasicrystals for group IV semiconductors
    Zhao, YF
    Kim, YH
    Du, MH
    Zhang, SB
    PHYSICS OF SEMICONDUCTORS, PTS A AND B, 2005, 772 : 625 - 626
  • [27] Engineering and probing atomic quantum defects in 2D semiconductors: A perspective
    Robinson, Joshua A.
    Schuler, Bruno
    APPLIED PHYSICS LETTERS, 2021, 119 (14) : 1ENG
  • [28] 2D Semiconductors Preface
    Voon, L. C. Lew Yan
    Wu, Kehwi
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2016, 28 (03)
  • [29] Machine-Learning Analysis to Predict the Exciton Valley Polarization Landscape of 2D Semiconductors
    Tanaka, Kenya
    Hachiya, Kengo
    Zhang, Wenjin
    Matsuda, Kazunari
    Miyauchi, Yuhei
    ACS NANO, 2019, 13 (11) : 12687 - 12693
  • [30] Ultrafast exciton dynamics and spatial coherence in 2D colloidal quantum wells
    Lian, Tianquan
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256