Compression algorithm for colored de Bruijn graphs

被引:0
|
作者
Rahman, Amatur [1 ]
Dufresne, Yoann [4 ,5 ]
Medvedev, Paul [1 ,2 ,3 ]
机构
[1] Penn State Univ, Dept Comp Sci & Engn, University Pk, PA 16802 USA
[2] Penn State Univ, Dept Biochem & Mol Biol, University Pk, PA 16802 USA
[3] Penn State Univ, Huck Inst Life Sci, University Pk, PA 16802 USA
[4] Univ Paris Cite, Inst Pasteur, G5 Sequence Bioinformat, Paris, France
[5] Univ Paris Cite, Inst Pasteur, Bioinformat & Biostat Hub, F-75015 Paris, France
关键词
SEARCH;
D O I
10.1186/s13015-024-00254-6
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
A colored de Bruijn graph (also called a set of k-mer sets), is a set of k-mers with every k-mer assigned a set of colors. Colored de Bruijn graphs are used in a variety of applications, including variant calling, genome assembly, and database search. However, their size has posed a scalability challenge to algorithm developers and users. There have been numerous indexing data structures proposed that allow to store the graph compactly while supporting fast query operations. However, disk compression algorithms, which do not need to support queries on the compressed data and can thus be more space-efficient, have received little attention. The dearth of specialized compression tools has been a detriment to tool developers, tool users, and reproducibility efforts. In this paper, we develop a new tool that compresses colored de Bruijn graphs to disk, building on previous ideas for compression of k-mer sets and indexing colored de Bruijn graphs. We test our tool, called ESS-color, on various datasets, including both sequencing data and whole genomes. ESS-color achieves better compression than all evaluated tools and all datasets, with no other tool able to consistently achieve less than 44% space overhead. The software is available at http://github.com/medvedevgroup/ESSColor.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Genome-wide somatic variant calling using localized colored de Bruijn graphs
    Narzisi, Giuseppe
    Corvelo, Andre
    Arora, Kanika
    Bergmann, Ewa A.
    Shah, Minita
    Musunuri, Rajeeva
    Emde, Anne-Katrin
    Robine, Nicolas
    Vacic, Vladimir
    Zody, Michael C.
    [J]. COMMUNICATIONS BIOLOGY, 2018, 1
  • [32] The Collatz conjecture and De Bruijn graphs
    Laarhoven, Thijs
    de Weger, Benne
    [J]. INDAGATIONES MATHEMATICAE-NEW SERIES, 2013, 24 (04): : 971 - 983
  • [33] Edge minimization in de Bruijn graphs
    Baier, Uwe
    Buechler, Thomas
    Ohlebusch, Enno
    Weber, Pascal
    [J]. INFORMATION AND COMPUTATION, 2022, 285
  • [34] Practical dynamic de Bruijn graphs
    Crawford, Victoria G.
    Kuhnle, Alan
    Boucher, Christina
    Chikhi, Rayan
    Gagie, Travis
    [J]. BIOINFORMATICS, 2018, 34 (24) : 4189 - 4195
  • [35] Bisecting de Bruijn and Kautz graphs
    Rolim, J
    Tvrdik, P
    Trdlicka, J
    Vrto, I
    [J]. DISCRETE APPLIED MATHEMATICS, 1998, 85 (01) : 87 - 97
  • [36] Succinct dynamic de Bruijn graphs
    Alipanahi, Bahar
    Kuhnle, Alan
    Puglisi, Simon J.
    Salmela, Leena
    Boucher, Christina
    [J]. BIOINFORMATICS, 2021, 37 (14) : 1946 - 1952
  • [37] Wide diameters of de Bruijn graphs
    Jyhmin Kuo
    Hung-Lin Fu
    [J]. Journal of Combinatorial Optimization, 2007, 14 : 143 - 152
  • [38] Indexing De Bruijn graphs with minimizers
    Marchet, Camille
    Kerbiriou, Mael
    Limasset, Antoine
    [J]. BMC BIOINFORMATICS, 2019, 20
  • [39] Independence number of de Bruijn graphs
    Lichiardopol, N
    [J]. DISCRETE MATHEMATICS, 2006, 306 (12) : 1145 - 1160
  • [40] Spanners of de Bruijn and Kautz graphs
    Harbane, R
    Padro, C
    [J]. INFORMATION PROCESSING LETTERS, 1997, 62 (05) : 231 - 236