Crime analysis and prediction using machine-learning approach in the case of Hossana Police Commission

被引:0
|
作者
Wubineh, Betelhem Zewdu [1 ,2 ]
机构
[1] Wroclaw Univ Sci & Technol, Fac Informat & Commun Technol, Wroclaw, Poland
[2] Wachemo Univ, Coll Engn & Technol, Dept Informat Technol, Hosaena, Ethiopia
关键词
Crime; Criminal; Machine learning; Prediction; Random forest;
D O I
10.1057/s41284-024-00416-6
中图分类号
DF [法律]; D9 [法律];
学科分类号
0301 ;
摘要
Crime is a socioeconomic problem that affects the quality of life and economic growth of a country, and it continues to increase. Crime prevention and prediction are systematic approaches used to locate and analyze historical data to identify trends that can be employed in identifying crimes and criminals. The objective of this study is to predict the type of crime that occurred in the city and identify the important features that make this prediction using a machine learning technique. For this experimental investigation, a supervised learning method was used to classify the types of crimes based on the final labelled class that indicates which type of crime is committed. Thus, decision tree (DT), random forest (RF), and K-nearest neighbor (KNN) algorithms are utilized along with the Python programming language in the Jupyter notebook environment. A total of 1400 records and nine attributes were used, and the data were split into training and testing sets, with 80% allocated to training and 20% for testing. The decision tree achieved an accuracy score of 84%, followed by the random forest at 86.07% and K-nearest neighbor at 81%. Besides this, the job of the offender, the victim's age, and the offender's age are the important features that cause crime. Therefore, it can be concluded that the use of machine learning to analyze historical data and the random forest algorithm to classify crimes yields promising results in predicting the type of crime.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Crime Analysis and Prediction using Machine Learning
    Llaha, Olta
    [J]. 2020 43RD INTERNATIONAL CONVENTION ON INFORMATION, COMMUNICATION AND ELECTRONIC TECHNOLOGY (MIPRO 2020), 2020, : 496 - 501
  • [2] Analysis and prediction of Indian stock market: a machine-learning approach
    Shilpa Srivastava
    Millie Pant
    Varuna Gupta
    [J]. International Journal of System Assurance Engineering and Management, 2023, 14 : 1567 - 1585
  • [3] Analysis and prediction of Indian stock market: a machine-learning approach
    Srivastava, Shilpa
    Pant, Millie
    Gupta, Varuna
    [J]. INTERNATIONAL JOURNAL OF SYSTEM ASSURANCE ENGINEERING AND MANAGEMENT, 2023, 14 (04) : 1567 - 1585
  • [4] Crime Prediction Using Machine Learning
    Ling, Hneah Guey
    Jian, Teng Wei
    Mohanan, Vasuky
    Yeo, Sook Fern
    Jothi, Neesha
    [J]. FORTHCOMING NETWORKS AND SUSTAINABILITY IN THE AIOT ERA, VOL 1, FONES-AIOT 2024, 2024, 1035 : 92 - 103
  • [5] Prediction of bacterial associations with plants using a supervised machine-learning approach
    Manuel Martinez-Garcia, Pedro
    Lopez-Solanilla, Emilia
    Ramos, Cayo
    Rodriguez-Palenzuela, Pablo
    [J]. ENVIRONMENTAL MICROBIOLOGY, 2016, 18 (12) : 4847 - 4861
  • [6] PREDICTION OF CRIME RATE ANALYSIS USING MACHINE LEARNING ALGORITHMS
    Shaik, Amjan
    Anisha, N. Satya
    Reddy, G. Vasanthi
    Reddy, D. Bala Cyril
    Sree, D. Keerthi
    Ali, Shaik
    [J]. INTERNATIONAL JOURNAL OF EARLY CHILDHOOD SPECIAL EDUCATION, 2022, 14 (05) : 1554 - 1563
  • [7] Groundwater Prediction Using Machine-Learning Tools
    Hussein, Eslam A.
    Thron, Christopher
    Ghaziasgar, Mehrdad
    Bagula, Antoine
    Vaccari, Mattia
    [J]. ALGORITHMS, 2020, 13 (11)
  • [8] An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked Generalization: An Ensemble Approach
    Kshatri, Sapna Singh
    Singh, Deepak
    Narain, Bhavana
    Bhatia, Surbhi
    Quasim, Mohammad Tabrez
    Sinha, G. R.
    [J]. IEEE ACCESS, 2021, 9 : 67488 - 67500
  • [9] Prediction of Nucleophilicity and Electrophilicity Based on a Machine-Learning Approach
    Liu, Yidi
    Yang, Qi
    Cheng, Junjie
    Zhang, Long
    Luo, Sanzhong
    Cheng, Jin-Pei
    [J]. CHEMPHYSCHEM, 2023, 24 (14)
  • [10] An Empirical Analysis of Machine Learning Algorithms for Crime Prediction Using Stacked Generalization: An Ensemble Approach
    Kshatri, Sapna Singh
    Singh, Deepak
    Narain, Bhavana
    Bhatia, Surbhi
    Quasim, Mohammad Tabrez
    Sinha, G.R.
    [J]. IEEE Access, 2021, 9 : 67488 - 67500