Neuro-fuzzy Takagi Sugeno observer for fault diagnosis in wind turbines

被引:0
|
作者
Perez-Perez, Esvan-Jesus [1 ,2 ]
Puig, Vicenc [1 ]
Lopez-Estrada, Francisco-Ronay [2 ]
Valencia-Palomo, Guillermo [3 ]
Santos-Ruiz, Ildeberto [2 ]
机构
[1] Univ Politecn Cataluna, CSIC, Inst Robot & Informat Ind, Parc Tecnol Barcelona,C Llorens & Artigas 4-6, Barcelona 08028, Spain
[2] Tecnol Nacl Mexico, TURIX Dynam Diag & Control Grp, Inst Tecnol Tuxtla Gutierrez, Carretera Panamer Km 1080, Tuxtla Gutierrez 29050, Mexico
[3] Tecnol Nacl Mexico, IT Hermosillo, Ave Tecnol 115, Hermosillo 83170, Sonora, Mexico
来源
IFAC PAPERSONLINE | 2023年 / 56卷 / 02期
关键词
Fault diagnosis; MANFIS; Artificial neural networks; wind turbines; Takagi Sugeno observers;
D O I
10.1016/j.ifacol.2023.10.1508
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This work proposes a method for fault diagnosis based on Takagi Sugeno (TS) observers and convex models identified with a multioutput adaptive neuro-fuzzy inference system (MANFIS) derived from structural analysis. A bank of zonotopic TS observers is implemented to detect sensors and actuators faults. Unlike other works that require data from fault scenarios to train the MANFIS neural network, only fault-free data are considered. In addition, uncertainty related to aerodynamic loads and measurement noise is considered for testing the proposed method's robustness. The method performance is evaluated using measurements from a 5 MW wind turbine benchmark.
引用
收藏
页码:3522 / 3527
页数:6
相关论文
共 50 条
  • [21] An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
    Amitava Chatterjee
    Keigo Watanabe
    [J]. Neural Computing & Applications, 2006, 15 : 55 - 61
  • [22] Nonlinear system identification using Takagi-Sugeno type neuro-fuzzy model
    Panchariya, PC
    Palit, AK
    Popovic, D
    Sharma, AL
    [J]. 2004 2ND INTERNATIONAL IEEE CONFERENCE INTELLIGENT SYSTEMS, VOLS 1 AND 2, PROCEEDINGS, 2004, : 76 - 81
  • [23] Runoff forecasting using a Takagi-Sugeno neuro-fuzzy model with online learning
    Talei, Amin
    Chua, Lloyd Hock Chye
    Quek, Chai
    Jansson, Per-Erik
    [J]. JOURNAL OF HYDROLOGY, 2013, 488 : 17 - 32
  • [24] An optimized Takagi-Sugeno type neuro-fuzzy system for modeling robot manipulators
    Chatterjee, A
    Watanabe, K
    [J]. NEURAL COMPUTING & APPLICATIONS, 2006, 15 (01): : 55 - 61
  • [25] HARDWARE IMPLEMENTATION OF A TAKAGI-SUGENO NEURO-FUZZY SYSTEM OPTIMIZED BY A POPULATION ALGORITHM
    Dziwinski, Piotr
    Przybyl, Andrzej
    Trippner, Pawel
    Paszkowski, Jozef
    Hayashi, Yoichi
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING RESEARCH, 2021, 11 (03) : 243 - 266
  • [26] A study on neuro-fuzzy systems for fault diagnosis
    Patton, RJ
    Chen, J
    Benkhedda, H
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2000, 31 (11) : 1441 - 1448
  • [27] Sensor Fault Tolerant Control of a Wind Turbine via Takagi-Sugeno Fuzzy Observer and Model Predictive Control
    Feng, Xiaoran
    Patton, Ron
    Wang, Zhihuo
    [J]. 2014 UKACC INTERNATIONAL CONFERENCE ON CONTROL (CONTROL), 2014, : 480 - 485
  • [28] Fuzzy Observer Design for State and Fault Estimation for Takagi-Sugeno Implicit Models
    Ouzaz, Manal
    El Assoudi, Abdellatif
    El Yaagoubi, El Hassane
    [J]. INTERNATIONAL JOURNAL OF FUZZY LOGIC AND INTELLIGENT SYSTEMS, 2023, 23 (01) : 1 - 10
  • [29] Clustered based Takagi-Sugeno neuro-fuzzy modeling of a multivariable nonlinear dynamic system
    Al-Gallaf, EA
    [J]. ASIAN JOURNAL OF CONTROL, 2005, 7 (02) : 163 - 176
  • [30] Neuro-fuzzy based Takagi-Sugeno modeling of nonlinear multivariable antenna dynamic system
    Al-Gallaf, EA
    [J]. Proceedings of the 23rd IASTED International Conference on Modelling, Identification, and Control, 2004, : 241 - 249