Primal-dual block-proximal splitting for a class of non-convex problems

被引:0
|
作者
Mazurenko S. [1 ]
Jauhiainen J. [2 ]
Valkonen T. [3 ,4 ]
机构
[1] Loschmidt Laboratories, Masaryk University, Brno
[2] University of Eastern Finland, Kuopio
[3] ModeMat, Escuela Politécnica Nacional, Quito
[4] Department of Mathematics and Statistics, University of Helsinki
来源
| 1600年 / Kent State University卷 / 52期
基金
芬兰科学院; 英国工程与自然科学研究理事会; 欧盟地平线“2020”;
关键词
Convex optimization; Non-smooth optimization; Primal-dual algorithms; Step length;
D O I
10.1553/ETNA_VOL52S509
中图分类号
学科分类号
摘要
We develop block structure-adapted primal-dual algorithms for non-convex non-smooth optimisation problems, whose objectives can be written as compositions G(x)+F(K(x)) of non-smooth block-separable convex functions G and F with a nonlinear Lipschitz-differentiable operatorK. Our methods are refinements of the nonlinear primal-dual proximal splitting method for such problems without the block structure, which itself is based on the primal-dual proximal splitting method of Chambolle and Pock for convex problems. We propose individual step length parameters and acceleration rules for each of the primal and dual blocks of the problem. This allows them to convergence faster by adapting to the structure of the problem. For the squared distance of the iterates to a critical point, we show local O(1=N), O(1=N2), and linear rates under varying conditions and choices of the step length parameters. Finally, we demonstrate the performance of the methods for the practical inverse problems of diffusion tensor imaging and electrical impedance tomography. © 2020 Kent State University. All rights reserved.
引用
收藏
页码:509 / 552
页数:43
相关论文
共 50 条
  • [31] NEW PRIMAL-DUAL ALGORITHMS FOR A CLASS OF NONSMOOTH AND NONLINEAR CONVEX-CONCAVE MINIMAX PROBLEMS
    Zhu, Yuzixuan
    Liu, Deyi
    Tran-Dinh, Quoc
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2022, 32 (04) : 2580 - 2611
  • [32] On the convergence rate of a forward-backward type primal-dual splitting algorithm for convex optimization problems
    Bot, Radu Ioan
    Csetnek, Ernoe Robert
    [J]. OPTIMIZATION, 2015, 64 (01) : 5 - 23
  • [33] Deep Block Proximal Linearised Minimisation Algorithm for Non-convex Inverse Problems
    Department of Mathematics, The Chinese University of Hong Kong, Hong Kong
    不详
    不详
    [J]. arXiv,
  • [34] DUALITY FOR A CLASS OF NON-CONVEX PROBLEMS
    GONCALVES, AS
    [J]. OPERATIONS RESEARCH, 1975, 23 : B286 - B286
  • [35] CLASS OF NON-CONVEX OPTIMIZATION PROBLEMS
    HIRCHE, J
    TAN, HK
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1977, 57 (04): : 247 - 253
  • [36] A Primal-Dual Forward-Backward Splitting Algorithm for Distributed Convex Optimization
    Li, Huaqing
    Su, Enbing
    Wang, Chengbo
    Liu, Jiawei
    Zheng, Zuqing
    Wang, Zheng
    Xia, Dawen
    [J]. IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2023, 7 (01): : 278 - 284
  • [37] A Momentum-Based Adaptive Primal-Dual Stochastic Gradient Method for Non-Convex Programs with Expectation Constraints
    Qi, Rulei
    Xue, Dan
    Zhai, Yujia
    [J]. MATHEMATICS, 2024, 12 (15)
  • [38] CONSISTENCY OF PRIMAL-DUAL APPROXIMATIONS FOR CONVEX OPTIMAL-CONTROL PROBLEMS
    WRIGHT, SE
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (05) : 1489 - 1509
  • [39] An adaptive fractional-order regularization primal-dual image denoising algorithm based on non-convex function
    Li, Minmin
    Bi, Shaojiu
    Cai, Guangcheng
    [J]. APPLIED MATHEMATICAL MODELLING, 2024, 131 : 67 - 83
  • [40] An adaptive fractional-order regularization primal-dual image denoising algorithm based on non-convex function
    Li, Minmin
    Bi, Shaojiu
    Cai, Guangcheng
    [J]. Applied Mathematical Modelling, 2024, 131 : 67 - 83