Primal-dual block-proximal splitting for a class of non-convex problems

被引:0
|
作者
Mazurenko S. [1 ]
Jauhiainen J. [2 ]
Valkonen T. [3 ,4 ]
机构
[1] Loschmidt Laboratories, Masaryk University, Brno
[2] University of Eastern Finland, Kuopio
[3] ModeMat, Escuela Politécnica Nacional, Quito
[4] Department of Mathematics and Statistics, University of Helsinki
来源
| 1600年 / Kent State University卷 / 52期
基金
英国工程与自然科学研究理事会; 芬兰科学院; 欧盟地平线“2020”;
关键词
Convex optimization; Non-smooth optimization; Primal-dual algorithms; Step length;
D O I
10.1553/ETNA_VOL52S509
中图分类号
学科分类号
摘要
We develop block structure-adapted primal-dual algorithms for non-convex non-smooth optimisation problems, whose objectives can be written as compositions G(x)+F(K(x)) of non-smooth block-separable convex functions G and F with a nonlinear Lipschitz-differentiable operatorK. Our methods are refinements of the nonlinear primal-dual proximal splitting method for such problems without the block structure, which itself is based on the primal-dual proximal splitting method of Chambolle and Pock for convex problems. We propose individual step length parameters and acceleration rules for each of the primal and dual blocks of the problem. This allows them to convergence faster by adapting to the structure of the problem. For the squared distance of the iterates to a critical point, we show local O(1=N), O(1=N2), and linear rates under varying conditions and choices of the step length parameters. Finally, we demonstrate the performance of the methods for the practical inverse problems of diffusion tensor imaging and electrical impedance tomography. © 2020 Kent State University. All rights reserved.
引用
收藏
页码:509 / 552
页数:43
相关论文
共 50 条
  • [1] PRIMAL-DUAL BLOCK-PROXIMAL SPLITTING FOR A CLASS OF NON-CONVEX PROBLEMS
    Mazurenko, Stanislav
    Jauhiainen, Jyrki
    Valkonen, Tuomo
    [J]. ELECTRONIC TRANSACTIONS ON NUMERICAL ANALYSIS, 2020, 52 : 509 - 552
  • [2] Primal-Dual Proximal Splitting and Generalized Conjugation in Non-smooth Non-convex Optimization
    Clason, Christian
    Mazurenko, Stanislav
    Valkonen, Tuomo
    [J]. APPLIED MATHEMATICS AND OPTIMIZATION, 2021, 84 (02): : 1239 - 1284
  • [3] Primal–Dual Proximal Splitting and Generalized Conjugation in Non-smooth Non-convex Optimization
    Christian Clason
    Stanislav Mazurenko
    Tuomo Valkonen
    [J]. Applied Mathematics & Optimization, 2021, 84 : 1239 - 1284
  • [4] Accelerated Primal-Dual Algorithm for Distributed Non-convex Optimization
    Zhang, Shengjun
    Bailey, Colleen P.
    [J]. 2021 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2021), 2021,
  • [5] Non-convex primal-dual algorithm for image reconstruction in spectral CT
    Chen, Buxin
    Zhang, Zheng
    Xia, Dan
    Sidky, Emil Y.
    Pan, Xiaochuan
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2021, 87
  • [6] A Decentralized Primal-Dual Framework for Non-Convex Smooth Consensus Optimization
    Mancino-Ball, Gabriel
    Xu, Yangyang
    Chen, Jie
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2023, 71 : 525 - 538
  • [7] Hierarchical Convex Optimization With Primal-Dual Splitting
    Ono, Shunsuke
    Yamada, Isao
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2015, 63 (02) : 373 - 388
  • [8] INERTIAL, CORRECTED, PRIMAL-DUAL PROXIMAL SPLITTING
    Valkonen, Tuomo
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2020, 30 (02) : 1391 - 1420
  • [9] A Primal-Dual Smoothing Framework for Max-Structured Non-Convex Optimization
    Zhao, Renbo
    [J]. MATHEMATICS OF OPERATIONS RESEARCH, 2023, 49 (03) : 1535 - 1565
  • [10] A primal-dual trust-region algorithm for non-convex nonlinear programming
    Andrew R. Conn
    Nicholas I. M. Gould
    Dominique Orban
    Philippe L. Toint
    [J]. Mathematical Programming, 2000, 87 : 215 - 249