Unsupervised learning-based wavefront sensing method for Hartmanns with insufficient sub-apertures

被引:0
|
作者
Ning, Yu [1 ,2 ,3 ]
He, Yulong [1 ,2 ,3 ]
Li, Jun [1 ,2 ]
Sun, Quan [1 ,2 ,3 ]
Xi, Fengjie [1 ,2 ,3 ]
Su, Ang [1 ,2 ,3 ]
Yi, Yang [1 ,2 ,3 ]
Xu, Xiaojun
机构
[1] Natl Univ Def Technol, Coll Adv Interdisciplinary Studies, Changsha 410073, Hunan, Peoples R China
[2] Natl Univ Def Technol, Nanhu Laser Lab, Changsha 410073, Hunan, Peoples R China
[3] Natl Univ Def Technol, Hunan Prov Key Lab High Energy Laser Technol, Changsha 410073, Hunan, Peoples R China
来源
OPTICS CONTINUUM | 2024年 / 3卷 / 02期
关键词
ADAPTIVE OPTICS; SENSOR; RECONSTRUCTION;
D O I
10.1364/OPTCON.506047
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
This paper proposes an unsupervised learning-based wavefront sensing method for SHWFS with insufficient sub-apertures. By modeling the light propagation of SHWFS in the neural network, the proposed method can train the model using unlabeled datasets. Therefore, it is convenient for the proposed method to be deployed in AO systems. The performance of the method is investigated through numerical simulations. Results show that the wavefront estimation accuracy of the proposed method is comparable to the existing methods based on supervised learning. This paper proposes a novel wavefront detection approach for SHWFS, the first application of unsupervised learning in wavefront detection.
引用
收藏
页码:122 / 134
页数:13
相关论文
共 50 条
  • [21] Learning-based compressive sensing method for EUV lithographic source optimization
    Lin, Jiaxin
    Dong, Lisong
    Fan, Taian
    Ma, Xu
    Wei, Yayi
    Ye, Tianchun
    [J]. OPTICS EXPRESS, 2019, 27 (16) : 22563 - 22581
  • [22] An Unsupervised Noisy Sample Detection Method for Deep Learning-Based Health Status Prediction
    Lin, Yan-Hui
    Chang, Liang
    [J]. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2022, 71
  • [23] An Unsupervised Noisy Sample Detection Method for Deep Learning-Based Health Status Prediction
    Lin, Yan-Hui
    Chang, Liang
    [J]. IEEE Transactions on Instrumentation and Measurement, 2022, 71
  • [24] Deep Learning-Based Unsupervised Human Facial Retargeting
    Kim, Seonghyeon
    Jung, Sunjin
    Seo, Kwanggyoon
    Blanco i Ribera, Roger
    Noh, Junyong
    [J]. COMPUTER GRAPHICS FORUM, 2021, 40 (07) : 45 - 55
  • [25] An unsupervised learning-based generalization of Data Envelopment Analysis
    Moragues, Raul
    Aparicio, Juan
    Esteve, Miriam
    [J]. OPERATIONS RESEARCH PERSPECTIVES, 2023, 11
  • [26] Unsupervised feature learning-based encoder and adversarial networks
    Suryawati, Endang
    Pardede, Hilman F.
    Zilvan, Vicky
    Ramdan, Ade
    Krisnandi, Dikdik
    Heryana, Ana
    Yuwana, R. Sandra
    Kusumo, R. Budiarianto Suryo
    Arisal, Andria
    Supianto, Ahmad Afif
    [J]. JOURNAL OF BIG DATA, 2021, 8 (01)
  • [27] Interferometric Wavefront Sensing System Based on Deep Learning
    Niu, Yuhao
    Gao, Zhan
    Gao, Chenjia
    Zhao, Jieming
    Wang, Xu
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (23): : 1 - 15
  • [28] Unsupervised Learning-Based Framework for Deepfake Video Detection
    Zhang, Li
    Qiao, Tong
    Xu, Ming
    Zheng, Ning
    Xie, Shichuang
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 4785 - 4799
  • [29] Unsupervised feature learning-based encoder and adversarial networks
    Endang Suryawati
    Hilman F. Pardede
    Vicky Zilvan
    Ade Ramdan
    Dikdik Krisnandi
    Ana Heryana
    R. Sandra Yuwana
    R. Budiarianto Suryo Kusumo
    Andria Arisal
    Ahmad Afif Supianto
    [J]. Journal of Big Data, 8
  • [30] Unsupervised Learning-based Anomalous Arabic Text Detection
    Abouzakhar, Nasser
    Allison, Ben
    Guthrie, Louise
    [J]. SIXTH INTERNATIONAL CONFERENCE ON LANGUAGE RESOURCES AND EVALUATION, LREC 2008, 2008, : 291 - 296