Dry sliding behavior of carbon-based brake pad materials

被引:0
|
作者
Saindane, U.V. [1 ]
Soni, S. [1 ]
Menghani, J.V. [1 ]
机构
[1] Mechanical Engineering Department, Sardar Vallabhbhai National Institute of Technology, Surat, India
关键词
D O I
暂无
中图分类号
学科分类号
摘要
The brake pad plays a crucial role in the control of vehicle and machinery equipment and subsequent safety. There is always a need for a new functional material with improved properties than existing ones. The present research study was carried out to develop a new brake pad material made up of polymer nanocomposite for enhanced physical, mechanical, and frictional characteristics in comparison to existing brake pad materials. In this study, polymer nanocomposite samples were developed and their physical properties namely density, water-oil absorption, and porosity were evaluated. Mechanical hardness of developed samples was estimated with Vicker’s hardness tester. Frictional characteristics of samples and wear values determined with pin or disc apparatus. Dry sliding behavior was examined by conducting multiple trials with sliding speed in the span of 2-10 m/s and load were changed from 20 N to 100 N to discuss the effect of velocity, the effect of nominal contact pressure and the effect of sliding distance on friction and temperature parameters. Morphology of prepared brake pad samples was characterized with the scanning electron microscope. Scanning electron micrographs of brake pad surfaces showed different shape wear debris and plateaus significantly affecting the friction characteristics. Developed samples along with commercial specimens show excellent resistance to water and oil absorption. Thus obtained results for evaluated polymer nanocomposite brake pad samples demonstrate their potential for brake pad applications. © 2021 Materials and Energy Research Center. All rights reserved.
引用
收藏
页码:2517 / 2524
相关论文
共 50 条
  • [31] Catalysis by novel carbon-based materials
    Likholobov, VA
    CATALYSIS BY UNIQUE METAL ION STRUCTURES IN SOLID MATRICES: FROM SCIENCE TO APPLICATION, 2001, 13 : 295 - 306
  • [32] THERMAL CONDUCTIVITY OF CARBON-BASED MATERIALS
    Kutuzov, S. V.
    Vasil'chenko, G. N.
    Chirka, T. V.
    Panov, E. N.
    REFRACTORIES AND INDUSTRIAL CERAMICS, 2013, 54 (01) : 39 - 43
  • [33] Hydrothermal corrosion of carbon-based materials
    Gogotsi, Y
    Libera, J
    HIGH TEMPERATURE CORROSION AND PROTECTION OF MATERIALS 5, PTS 1 AND 2, 2001, 369-3 : 982 - 982
  • [34] Carbon-based materials for electrochemical dechlorination
    Guoqiang Gan
    Guo Hong
    Wenjun Zhang
    Nano Research, 2023, 16 : 12543 - 12557
  • [35] Fullerenes as precursors of carbon-based materials
    Milani, P
    Manfredini, M
    Bottani, CE
    SYNTHETIC METALS, 1996, 77 (1-3) : 81 - 83
  • [36] Plasma production in carbon-based materials
    Giuffreda, E.
    Delle Side, A.
    Nassisi, V.
    Krasa, J.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH MATERIALS AND ATOMS, 2017, 406 : 225 - 228
  • [37] Carbon-based optical limiting materials
    Yan Wang
    Mingzhe Lv
    Jin Guo
    Tingfeng Wang
    Junfeng Shao
    Dong Wang
    Ying-Wei Yang
    Science China(Chemistry), 2015, 58 (12) : 1782 - 1791
  • [38] Carbon-based materials for electrochemical dechlorination
    Gan, Guoqiang
    Hong, Guo
    Zhang, Wenjun
    NANO RESEARCH, 2023, 16 (11) : 12543 - 12557
  • [39] Carbon-based optical limiting materials
    Wang, Yan
    Lv, Mingzhe
    Guo, Jin
    Wang, Tingfeng
    Shao, Junfeng
    Wang, Dong
    Yang, Ying-Wei
    SCIENCE CHINA-CHEMISTRY, 2015, 58 (12) : 1782 - 1791
  • [40] Carbon-based materials studied by PEELS
    Brydson, R
    Jiang, X
    Westwood, A
    Collins, S
    Lu, S
    Rand, B
    ELECTRON MICROSCOPY AND ANALYSIS 1997, 1997, (153): : 515 - 518