Scalable Diffusion Models with Transformers

被引:40
|
作者
Peebles, William [1 ,3 ]
Xie, Saining [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] NYU, New York, NY 10003 USA
[3] Meta AI, FAIR Team, Menlo Pk, CA USA
关键词
D O I
10.1109/ICCV51070.2023.00387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops-through increased transformer depth/width or increased number of input tokens-consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512 512 and 256 256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
引用
收藏
页码:4172 / 4182
页数:11
相关论文
共 50 条
  • [21] Verification of transformers windings models for FRA
    Trela, Katarzyna
    Gawrylczyk, Konstanty M.
    [J]. PRZEGLAD ELEKTROTECHNICZNY, 2018, 94 (10): : 49 - 52
  • [22] COMPARISON OF DIFFERENT ELECTROMAGNETIC MODELS OF TRANSFORMERS
    Zakrzewski, Kazimierz
    [J]. 2016 13TH SELECTED ISSUES OF ELECTRICAL ENGINEERING AND ELECTRONICS (WZEE), 2016,
  • [23] An Automatic Parameter Extraction and Scalable Modeling Method for Transformers in RF Circuit
    Yao, Jian
    Ye, Zuochang
    Wang, Yan
    [J]. 2013 IEEE RADIO FREQUENCY INTEGRATED CIRCUITS SYMPOSIUM (RFIC), 2013, : 57 - 60
  • [24] Power Semiconductor Switches for Pulse Power Transformers with a Modular and Scalable Architecture
    Reznikov S.B.
    Vol’skii S.I.
    Vyshkov Y.D.
    Kirillov V.Y.
    Kharchenko I.A.
    [J]. Russian Electrical Engineering, 2019, 90 (02) : 100 - 106
  • [25] Scalable modeling with simple topology for stacked millimeter-wave transformers
    Lu, Diqun
    Zhang, Wenjuan
    Lin, Fujiang
    [J]. INTERNATIONAL JOURNAL OF NUMERICAL MODELLING-ELECTRONIC NETWORKS DEVICES AND FIELDS, 2016, 29 (03) : 437 - 445
  • [26] Scalable Modeling with Simple Topology for Stacked Millimeter-Wave Transformers
    Lu, Diqun
    Zhang, Wenjuan
    Lin, Fujiang
    [J]. 2015 IEEE MTT-S INTERNATIONAL MICROWAVE WORKSHOP SERIES ON ADVANCED MATERIALS AND PROCESSES FOR RF AND THZ APPLICATIONS (IMWS-AMP), 2015, : 434 - 436
  • [27] Geometric Design of Scalable Forward Scatterers for Optimally Efficient Solar Transformers
    Kim, Hye-Na
    Vahidinia, Sanaz
    Holt, Amanda L.
    Sweeney, Alison M.
    Yang, Shu
    [J]. ADVANCED MATERIALS, 2017, 29 (44)
  • [28] A Low-Latency and Scalable Vector Engine with Operation Fusion for Transformers
    Cha, Mincheol
    Lee, Keehyuk
    Nguyen, Xuan Truong
    Lee, Hyuk-Jae
    [J]. 2024 IEEE 6TH INTERNATIONAL CONFERENCE ON AI CIRCUITS AND SYSTEMS, AICAS 2024, 2024, : 307 - 311
  • [29] Scalable compact circuit model for differential spiral transformers in CMOS RFICs
    Gao, Wei
    Rao, Chao
    Liu, Tao
    Yu, Zhiping
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2006, 53 (09) : 2187 - 2194
  • [30] Wanted: Scalable Tracers for Diffusion Measurements
    Saxton, Michael J.
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2014, 118 (45): : 12805 - 12817