Scalable Diffusion Models with Transformers

被引:40
|
作者
Peebles, William [1 ,3 ]
Xie, Saining [2 ]
机构
[1] Univ Calif Berkeley, Berkeley, CA 94720 USA
[2] NYU, New York, NY 10003 USA
[3] Meta AI, FAIR Team, Menlo Pk, CA USA
关键词
D O I
10.1109/ICCV51070.2023.00387
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore a new class of diffusion models based on the transformer architecture. We train latent diffusion models of images, replacing the commonly-used U-Net backbone with a transformer that operates on latent patches. We analyze the scalability of our Diffusion Transformers (DiTs) through the lens of forward pass complexity as measured by Gflops. We find that DiTs with higher Gflops-through increased transformer depth/width or increased number of input tokens-consistently have lower FID. In addition to possessing good scalability properties, our largest DiT-XL/2 models outperform all prior diffusion models on the class-conditional ImageNet 512 512 and 256 256 benchmarks, achieving a state-of-the-art FID of 2.27 on the latter.
引用
收藏
页码:4172 / 4182
页数:11
相关论文
共 50 条
  • [1] Scalable lumped models of integrated transformers for galvanically isolated power transfer systems
    Greco, Nunzio
    Parisi, Alessandro
    Spina, Nunzio
    Ragonese, Egidio
    Palmisano, Giuseppe
    [J]. INTEGRATION-THE VLSI JOURNAL, 2018, 63 : 323 - 331
  • [2] A Comprehensive Survey of Recent Transformers in Image, Video and Diffusion Models
    Le, Dinh Phu Cuong
    Wang, Dong
    Le, Viet-Tuan
    [J]. CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (01): : 37 - 60
  • [3] Wavelet Diffusion Models are fast and scalable Image Generators
    Phung, Hao
    Dao, Quan
    Tran, Anh
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 10199 - 10208
  • [4] Scalable Vision Transformers with Hierarchical Pooling
    Pan, Zizheng
    Zhuang, Bohan
    Liu, Jing
    He, Haoyu
    Cai, Jianfei
    [J]. 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 367 - 376
  • [5] CIRCUIT MODELS FOR TRANSFORMERS
    YARBROUG.RB
    [J]. IEEE TRANSACTIONS ON EDUCATION, 1969, E 12 (03) : 181 - &
  • [6] Models of Ferroresonant Transformers
    Zhilichev, Yuriy
    [J]. IEEE TRANSACTIONS ON POWER DELIVERY, 2014, 29 (06) : 2631 - 2639
  • [7] Scalable and Accurate ECG Simulation for Reaction-Diffusion Models of the Human Heart
    Potse, Mark
    [J]. FRONTIERS IN PHYSIOLOGY, 2018, 9
  • [8] AdaptFormer: Adapting Vision Transformers for Scalable Visual Recognition
    Chen, Shoufa
    Ge, Chongjian
    Tong, Zhan
    Wang, Jiangliu
    Song, Yibing
    Wang, Jue
    Luo, Ping
    [J]. ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [9] Wanted: Scalable Tracers for Diffusion
    Saxton, Michael J.
    [J]. BIOPHYSICAL JOURNAL, 2013, 104 (02) : 671A - 671A
  • [10] Scalable Verification of Networks With Packet Transformers Using Atomic Predicates
    Yang, Hongkun
    Lam, Simon S.
    [J]. IEEE-ACM TRANSACTIONS ON NETWORKING, 2017, 25 (05) : 2900 - 2915