Recipes for Forming a Carbon-Rich Giant Planet

被引:1
|
作者
Mousis, Olivier [1 ,2 ]
Cavalie, Thibault [3 ]
Lunine, Jonathan I. [4 ]
Mandt, Kathleen E. [5 ]
Hueso, Ricardo [6 ]
Aguichine, Artyom [7 ]
Schneeberger, Antoine [1 ]
Couzinou, Tom Benest [1 ]
Atkinson, David H. [8 ]
Hue, Vincent [1 ]
Hofstadter, Mark [9 ]
Srisuchinwong, Udomlerd [1 ]
机构
[1] Aix Marseille Univ, CNRS, CNES, LAM,Inst Origines, Marseille, France
[2] Inst Univ France IUF, Paris, France
[3] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS B18N, Allee Geoffroy St Hilaire, F-33615 Pessac, France
[4] Cornell Univ, Dept Astron, Ithaca, NY USA
[5] Johns Hopkins Univ, Appl Phys Lab, 11100 Johns Hopkins Rd, Laurel, MD 20723 USA
[6] Univ Basque Country, Escuela Ingn Bilbao, Dept Fis Aplicada, Euskal Herriko Unibertsitatea UPV EHU, Plaza Ingn Torres Quevedo 1, Bilbao 48013, Spain
[7] Univ Calif Santa Cruz, Dept Astron & Astrophys, Santa Cruz, CA USA
[8] Whitman Coll, Walla Walla, WA 99362 USA
[9] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
关键词
Giant planets; Carbon-to-oxygen ratio; Formation; Protosolar nebula; DEEP-WATER ABUNDANCE; MOIST CONVECTION; SOLAR-SYSTEM; METHANE; ATMOSPHERE; SATURN; MODEL; JUPITER; ORIGIN; OXYGEN;
D O I
10.1007/s11214-024-01071-4
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
The exploration of carbon-to-oxygen ratios has yielded intriguing insights into the composition of close-in giant exoplanets, giving rise to a distinct classification: carbon-rich planets, characterized by a carbon-to-oxygen ratio >= 1 in their atmospheres, as opposed to giant planets exhibiting carbon-to-oxygen ratios close to the protosolar value. In contrast, despite numerous space missions dispatched to the outer solar system and the proximity of Jupiter, Saturn, Uranus, and Neptune, our understanding of the carbon-to-oxygen ratio in these giants remains notably deficient. Determining this ratio is crucial as it serves as a marker linking a planet's volatile composition directly to its formation region within the disk. This article provides an overview of the current understanding of the carbon-to-oxygen ratio in the four gas giants of our solar system and explores why there is yet no definitive dismissal of the possibility that Jupiter, Saturn, Uranus, or Neptune could be considered carbon-rich planets. Additionally, we delve into the three primary formation scenarios proposed in existing literature to account for a bulk carbon-to-oxygen ratio >= 1 in a giant planet. A significant challenge lies in accurately inferring the bulk carbon-to-oxygen ratio of our solar system's gas giants. Retrieval methods involve integrating in situ measurements from entry probes equipped with mass spectrometers and remote sensing observations conducted at microwave wavelengths by orbiters. However, these methods fall short of fully discerning the deep carbon-to-oxygen abundance in the gas giants due to their limited probing depth, typically within the 10-100 bar range. To complement these direct measurements, indirect determinations rely on understanding the vertical distribution of atmospheric carbon monoxide in conjunction with thermochemical models. These models aid in evaluating the deep oxygen abundance in the gas giants, providing valuable insights into their overall composition.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] Carbon-rich silicon carbide crystals
    Gadzyra, NF
    Gnesin, GG
    Andreev, AV
    Kravets, VG
    Kasyanenko, AA
    INORGANIC MATERIALS, 1996, 32 (07) : 721 - 724
  • [32] The synthesis of carbon-rich nanomolecules Preface
    Tykwinski, Rik R.
    Nierengarten, Jean-Francois
    TETRAHEDRON, 2008, 64 (50) : 11359 - 11359
  • [33] CARBON-RICH DUST PAST THE ASYMPTOTIC GIANT BRANCH: ALIPHATICS, AROMATICS, AND FULLERENES IN THE MAGELLANIC CLOUDS
    Sloan, G. C.
    Lagadec, E.
    Zijlstra, A. A.
    Kraemer, K. E.
    Weis, A. P.
    Matsuura, M.
    Volk, K.
    Peeters, E.
    Duley, W. W.
    Cami, J.
    Bernard-Salas, J.
    Kemper, F.
    Sahai, R.
    ASTROPHYSICAL JOURNAL, 2014, 791 (01):
  • [34] THEORETICAL SPECTRA OF CIRCUMSTELLAR DUST SHELLS AROUND CARBON-RICH ASYMPTOTIC GIANT BRANCH STARS
    WINTERS, JM
    DOMINIK, C
    SEDLMAYR, E
    ASTRONOMY & ASTROPHYSICS, 1994, 288 (01) : 255 - 272
  • [35] Giant baby planet spotted within planet-forming disc
    Johnston, Hamish
    PHYSICS WORLD, 2018, 31 (08) : 5 - 5
  • [37] Suppressed diffusion of boron and carbon in carbon-rich silicon
    Rucker, H
    Heinemann, B
    Ropke, W
    Kurps, R
    Kruger, D
    Lippert, G
    Osten, HJ
    APPLIED PHYSICS LETTERS, 1998, 73 (12) : 1682 - 1684
  • [38] RADIATIVE OPACITIES FOR CARBON-RICH AND OXYGEN-RICH MIXTURES
    IGLESIAS, CA
    ROGERS, FJ
    ASTROPHYSICAL JOURNAL, 1993, 412 (02): : 752 - 760
  • [40] Luminescent carbon-rich rhenium(I) complexes
    Yam, VWW
    CHEMICAL COMMUNICATIONS, 2001, (09) : 789 - 796