A Bayesian framework for 3D point cloud filtering

被引:0
|
作者
AbdulJabbar Sadeq, Haval [1 ]
机构
[1] Salahaddin Univ Erbil, Geomat Surveying Engn Dept, Erbil, Iraq
关键词
Bayesian approaches; point filtering; UAV point cloud; DSM filtering; 3D modelling; AIRBORNE LIDAR DATA; PROGRESSIVE TIN DENSIFICATION; BARE-EARTH EXTRACTION; DIGITAL TERRAIN MODEL; LASER-SCANNING DATA; BUILDING EXTRACTION; DTM GENERATION; MORPHOLOGICAL FILTER; ALGORITHM; CLASSIFICATION;
D O I
10.1080/14498596.2024.2337742
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
This paper introduces a novel Bayesian filtering technique for the filtration of ground points in complex terrain and steep inclines in remote sensing applications. The technique integrates LAStools and statistical techniques, generating a posterior distribution using prior probability and likelihood functions. It is applied to point cloud data from UAV aerial images and DSM formats. The study shows that the Bayesian method improves the outcome in sloping regions compared to other algorithms like LAStools, Statistical, and CSF. In flat terrain, the CSF approach produced the highest F1 score, while the Bayesian method showed degradation but outperformed statistical and LAStools approaches.
引用
收藏
页码:995 / 1018
页数:24
相关论文
共 50 条
  • [31] A Bayesian framework for 3D surface estimation
    Turner, M
    Hancock, ER
    [J]. PATTERN RECOGNITION, 2001, 34 (04) : 903 - 922
  • [32] PVF-NET: Point & Voxel Fusion 3D Object Detection Framework for Point Cloud
    Cui, Zhihao
    Zhang, Zhenhua
    [J]. 2020 17TH CONFERENCE ON COMPUTER AND ROBOT VISION (CRV 2020), 2020, : 125 - 133
  • [33] Point Cloud Processing Methods for 3D Point Cloud Detection Tasks
    WANG Chongchong
    LI Yao
    WANG Beibei
    CAO Hong
    ZHANG Yanyong
    [J]. ZTE Communications, 2023, 21 (04) : 38 - 46
  • [34] Improved Iterative Closest Point(ICP) 3D point cloud registration algorithm based on point cloud filtering and adaptive fireworks for coarse registration
    Shi, Xiaojing
    Liu, Tao
    Han, Xie
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2020, 41 (08) : 3197 - 3220
  • [35] A 3D Point Cloud Reconstruction Method
    Zhang, Yang
    Jia, Tong
    Chen, Yanqi
    Tan, Zexun
    [J]. 2019 9TH IEEE ANNUAL INTERNATIONAL CONFERENCE ON CYBER TECHNOLOGY IN AUTOMATION, CONTROL, AND INTELLIGENT SYSTEMS (IEEE-CYBER 2019), 2019, : 1310 - 1315
  • [36] Geometric 3D point cloud compression
    Morell, Vicente
    Orts, Sergio
    Cazorla, Miguel
    Garcia-Rodriguez, Jose
    [J]. PATTERN RECOGNITION LETTERS, 2014, 50 : 55 - 62
  • [37] 3D Point Cloud Segmentation: A survey
    Anh Nguyen
    Le, Bac
    [J]. PROCEEDINGS OF THE 2013 6TH IEEE CONFERENCE ON ROBOTICS, AUTOMATION AND MECHATRONICS (RAM), 2013, : 225 - 230
  • [38] Representing 3D Point Cloud Data
    Poux, Florent
    [J]. GIM INTERNATIONAL-THE WORLDWIDE MAGAZINE FOR GEOMATICS, 2022, 36 (04): : 36 - +
  • [39] 3D Point Cloud Compression: A Survey
    Cao, Chao
    Preda, Marius
    Zaharia, Titus
    [J]. PROCEEDINGS WEB3D 2019: THE 24TH INTERNATIONAL ACM CONFERENCE ON 3D WEB TECHNOLOGY, 2019,
  • [40] Leaves Segmentation in 3D Point Cloud
    Gelard, William
    Herbulot, Ariane
    Devy, Michel
    Debaeke, Philippe
    McCormick, Ryan F.
    Truong, Sandra K.
    Mullet, John
    [J]. ADVANCED CONCEPTS FOR INTELLIGENT VISION SYSTEMS (ACIVS 2017), 2017, 10617 : 664 - 674