Modern machine-learning applications in ambient ionization mass spectrometry

被引:2
|
作者
Sorokin, Anatoly A. [1 ]
Pekov, Stanislav I. [2 ,3 ,4 ]
Zavorotnyuk, Denis S. [1 ]
Shamraeva, Mariya M. [1 ]
Bormotov, Denis S. [1 ]
Popov, Igor A. [1 ,3 ,5 ]
机构
[1] Moscow Inst Phys & Technol, Lab Mol Med Diag, Dolgoprudnyi, Russia
[2] Skolkovo Inst Sci & Technol, Mass Spectrometry Lab, Moscow, Russia
[3] Siberian State Med Univ, Translat Med Lab, Tomsk, Russia
[4] Moscow Inst Phys & Technol, Dept Mol & Biol Phys, Dolgoprudnyi, Russia
[5] Moscow Inst Phys & Technol, Lab Mol Med Diag, Dolgoprudnyi 141701, Russia
关键词
ambient ionisation; data analysis; deep learning; machine learning; mass spectrometry imaging; PAPER SPRAY; IN-VIVO; CANCER; QUANTIFICATION; NORMALIZATION; RESOLUTION; VERSATILE; CHEMISTRY; GEOMETRY; MIXTURES;
D O I
10.1002/mas.21886
中图分类号
O433 [光谱学];
学科分类号
0703 ; 070302 ;
摘要
This article provides a comprehensive overview of the applications of methods of machine learning (ML) and artificial intelligence (AI) in ambient ionization mass spectrometry (AIMS). AIMS has emerged as a powerful analytical tool in recent years, allowing for rapid and sensitive analysis of various samples without the need for extensive sample preparation. The integration of ML/AI algorithms with AIMS has further expanded its capabilities, enabling enhanced data analysis. This review discusses ML/AI algorithms applicable to the AIMS data and highlights the key advancements and potential benefits of utilizing ML/AI in the field of mass spectrometry, with a focus on the AIMS community.
引用
收藏
页码:74 / 88
页数:15
相关论文
共 50 条
  • [21] Advances in Ambient Ionization for Mass Spectrometry
    Zhang Xing-Lei
    Zhang Hua
    Wang Xin-Chen
    Huang Ke-Ke
    Wang Dan
    Chen Huan-Wen
    CHINESE JOURNAL OF ANALYTICAL CHEMISTRY, 2018, 46 (11) : 1703 - 1713
  • [22] Nanotip Ambient Ionization Mass Spectrometry
    Zhou, Zhenpeng
    Lee, Jae Kyoo
    Kim, Samuel C.
    Zare, Richard N.
    ANALYTICAL CHEMISTRY, 2016, 88 (10) : 5542 - 5548
  • [23] Ambient desorption ionization mass spectrometry
    Venter, Andre
    Nefliu, Marcela
    Cooks, R. Graham
    TRAC-TRENDS IN ANALYTICAL CHEMISTRY, 2008, 27 (04) : 284 - 290
  • [24] Ambient ionization mass spectrometry: A tutorial
    Huang, Min-Zong
    Cheng, Sy-Chi
    Cho, Yi-Tzu
    Shiea, Jentaie
    ANALYTICA CHIMICA ACTA, 2011, 702 (01) : 1 - 15
  • [25] Optimal Mass Transport Signal processing and machine-learning applications
    Kolouri, Soheil
    Park, Se Rim
    Thorpe, Matthew
    Slepcev, Dejan
    Rohde, Gustavo K.
    IEEE SIGNAL PROCESSING MAGAZINE, 2017, 34 (04) : 43 - 59
  • [26] Ambient Mass Spectrometry Imaging: Plasma Assisted Laser Desorption Ionization Mass Spectrometry Imaging and Its Applications
    Feng, Baosheng
    Zhang, Jialing
    Chang, Cuilan
    Li, Liping
    Li, Min
    Xiong, Xingchuang
    Guo, Chengan
    Tang, Fei
    Bai, Yu
    Liu, Huwei
    ANALYTICAL CHEMISTRY, 2014, 86 (09) : 4164 - 4169
  • [27] Ambient ionization mass spectrometry: From fundamentals to real-life applications
    Wang, Haixing
    So, Pui-Kin
    Habib, Ahsan
    Xu, Yu
    Bianchi, Federica
    FRONTIERS IN CHEMISTRY, 2023, 11
  • [28] Ambient Ionization Mass Spectrometry: Applications and New Trends for Environmental Matrices Analysis
    Chaves, Andrea Rodrigues
    Martins, Rafael Oliveira
    Maciel, Lanaia Itala Louzeiro
    Silva, Allyster Rodrigues
    Gondim, Daniel Vieira
    Fortalo, Julia Martins
    Santos, Steffany de Souza
    Roque, Jussara Valente
    Vaz, Boniek Gontijo
    BRAZILIAN JOURNAL OF ANALYTICAL CHEMISTRY, 2022, 9 (36): : 52 - 77
  • [29] Thermal bursting ionization for ambient mass spectrometry
    Pei, Jiying
    Yu, Kefu
    Wang, Yinghui
    RSC ADVANCES, 2016, 6 (03): : 2496 - 2499
  • [30] Ambient Ionization Mass Spectrometry: Application and Prospective
    Shi, Lulu
    Habib, Ahsan
    Bi, Lei
    Hong, Huanhuan
    Begum, Rockshana
    Wen, Luhong
    CRITICAL REVIEWS IN ANALYTICAL CHEMISTRY, 2024, 54 (06) : 1584 - 1633