ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles

被引:13
|
作者
Zhao, Xiaofeng [1 ]
Zhang, Wenwen [1 ]
Zhang, Hui [1 ]
Zheng, Chao [1 ]
Ma, Junyi [1 ]
Zhang, Zhili [1 ]
机构
[1] Xian Res Inst High Tech, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
infrared target detection; YOLOv8; UAVs; multi-scale small target; lightweight network structure;
D O I
10.3390/drones8040161
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model's applicability for infrared target detection on unmanned aerial vehicles (UAVs).
引用
收藏
页数:17
相关论文
共 50 条
  • [21] POD PEPPER TARGET DETECTION BASED ON IMPROVED YOLOv8
    Shen, Jiayv
    Kong, Qingzhong
    Liu, Yanghao
    Ma, Na
    INMATEH - Agricultural Engineering, 2024, 74 (03): : 273 - 282
  • [22] Infrared Road Object Detection Based on Improved YOLOv8
    Luo, Zilong
    Tian, Ying
    IAENG International Journal of Computer Science, 2024, 51 (03) : 252 - 259
  • [23] UAV-YOLOv8: A Small-Object-Detection Model Based on Improved YOLOv8 for UAV Aerial Photography Scenarios
    Wang, Gang
    Chen, Yanfei
    An, Pei
    Hong, Hanyu
    Hu, Jinghu
    Huang, Tiange
    SENSORS, 2023, 23 (16)
  • [24] Real-Time Vehicles Detection with YOLOv8
    Lin, Chih-Jer
    Lee, Chi-Mo
    2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024, 2024, : 805 - 806
  • [25] Small Object Detection in Aerial Drone Imagery based on YOLOv8
    Pan, Junyu
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (09) : 1346 - 1354
  • [26] GFI-YOLOv8: Sika Deer Posture Recognition Target Detection Method Based on YOLOv8
    Gong, He
    Liu, Jingyi
    Li, Zhipeng
    Zhu, Hang
    Luo, Lan
    Li, Haoxu
    Hu, Tianli
    Guo, Ying
    Mu, Ye
    ANIMALS, 2024, 14 (18):
  • [27] ADL-YOLOv8: A Field Crop Weed Detection Model Based on Improved YOLOv8
    Jia, Zhiyu
    Zhang, Ming
    Yuan, Chang
    Liu, Qinghua
    Liu, Hongrui
    Qiu, Xiulin
    Zhao, Weiguo
    Shi, Jinlong
    AGRONOMY-BASEL, 2024, 14 (10):
  • [28] SD-YOLOv8: An Accurate Seriola dumerili Detection Model Based on Improved YOLOv8
    Liu, Mingxin
    Li, Ruixin
    Hou, Mingxin
    Zhang, Chun
    Hu, Jiming
    Wu, Yujie
    SENSORS, 2024, 24 (11)
  • [29] ESD-YOLOv8: An Efficient Solar Cell Fault Detection Model Based on YOLOv8
    Zhang, Lingyun
    Wu, Xu
    Liu, Zihan
    Yu, Panlin
    Yang, Mingfen
    IEEE ACCESS, 2024, 12 : 138801 - 138815
  • [30] EDGS-YOLOv8: An Improved YOLOv8 Lightweight UAV Detection Model
    Huang, Min
    Mi, Wenkai
    Wang, Yuming
    DRONES, 2024, 8 (07)