ITD-YOLOv8: An Infrared Target Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles

被引:13
|
作者
Zhao, Xiaofeng [1 ]
Zhang, Wenwen [1 ]
Zhang, Hui [1 ]
Zheng, Chao [1 ]
Ma, Junyi [1 ]
Zhang, Zhili [1 ]
机构
[1] Xian Res Inst High Tech, Xian 710025, Peoples R China
基金
中国国家自然科学基金;
关键词
infrared target detection; YOLOv8; UAVs; multi-scale small target; lightweight network structure;
D O I
10.3390/drones8040161
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
A UAV infrared target detection model ITD-YOLOv8 based on YOLOv8 is proposed to address the issues of model missed and false detections caused by complex ground background and uneven target scale in UAV aerial infrared image target detection, as well as high computational complexity. Firstly, an improved YOLOv8 backbone feature extraction network is designed based on the lightweight network GhostHGNetV2. It can effectively capture target feature information at different scales, improving target detection accuracy in complex environments while remaining lightweight. Secondly, the VoVGSCSP improves model perceptual abilities by referencing global contextual information and multiscale features to enhance neck structure. At the same time, a lightweight convolutional operation called AXConv is introduced to replace the regular convolutional module. Replacing traditional fixed-size convolution kernels with convolution kernels of different sizes effectively reduces the complexity of the model. Then, to further optimize the model and reduce missed and false detections during object detection, the CoordAtt attention mechanism is introduced in the neck of the model to weight the channel dimensions of the feature map, allowing the network to pay more attention to the important feature information, thereby improving the accuracy and robustness of object detection. Finally, the implementation of XIoU as a loss function for boundary boxes enhances the precision of target localization. The experimental findings demonstrate that ITD-YOLOv8, in comparison to YOLOv8n, effectively reduces the rate of missed and false detections for detecting multi-scale small targets in complex backgrounds. Additionally, it achieves a 41.9% reduction in model parameters and a 25.9% decrease in floating-point operations. Moreover, the mean accuracy (mAP) attains an impressive 93.5%, thereby confirming the model's applicability for infrared target detection on unmanned aerial vehicles (UAVs).
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A Lightweight Real-Time Infrared Object Detection Model Based on YOLOv8 for Unmanned Aerial Vehicles
    Ding, Baolong
    Zhang, Yihong
    Ma, Shuai
    DRONES, 2024, 8 (09)
  • [2] Monitoring Jackfruit Growth Based on YOLOv8 with Unmanned Aerial Vehicles
    Han, Haoyuan
    Wang, Zijun
    Wu, Di
    Proceedings of 2024 IEEE International Conference on Unmanned Systems, ICUS 2024, 2024, : 1641 - 1646
  • [3] FDW-YOLOv8: A Lightweight Unmanned Aerial Vehicle Small Target Detection Algorithm Based on Enhanced YOLOv8
    Chai, Wei
    Han, Dongjun
    Zhou, Haonan
    Wang, Shujie
    Zhou, Fuhui
    2024 IEEE INTERNATIONAL WORKSHOP ON RADIO FREQUENCY AND ANTENNA TECHNOLOGIES, IWRF&AT 2024, 2024, : 368 - 373
  • [4] RVDR-YOLOv8: A Weed Target Detection Model Based on Improved YOLOv8
    Ding, Yuanming
    Jiang, Chen
    Song, Lin
    Liu, Fei
    Tao, Yunrui
    ELECTRONICS, 2024, 13 (11)
  • [5] Application of YOLOv8 in Target Detection of Autonomous Vehicles
    Song, Ke
    Ling, Hao
    Ou, Jiejia
    Zhu, Yue
    Zhang, Zihui
    Zhang, Haoran
    Huang, Zhe
    Zhu, Xiaozhang
    2024 9TH INTERNATIONAL CONFERENCE ON ELECTRONIC TECHNOLOGY AND INFORMATION SCIENCE, ICETIS 2024, 2024, : 348 - 352
  • [6] Research on Infrared Dim Target Detection Based on Improved YOLOv8
    Liu, Yangfan
    Li, Ning
    Cao, Lihua
    Zhang, Yunfeng
    Ni, Xu
    Han, Xiyu
    Dai, Deen
    REMOTE SENSING, 2024, 16 (16)
  • [7] Recognition of Maize Tassels Based on Improved YOLOv8 and Unmanned Aerial Vehicles RGB Images
    Wei, Jiahao
    Wang, Ruirui
    Wei, Shi
    Wang, Xiaoyan
    Xu, Shicheng
    DRONES, 2024, 8 (11)
  • [8] G-YOLO: A Lightweight Infrared Aerial Remote Sensing Target Detection Model for UAVs Based on YOLOv8
    Zhao, Xiaofeng
    Zhang, Wenwen
    Xia, Yuting
    Zhang, Hui
    Zheng, Chao
    Ma, Junyi
    Zhang, Zhili
    DRONES, 2024, 8 (09)
  • [9] Improved YOLOv8 Small Target Detection Algorithm in Aerial Images
    Fu, Jinyi
    Zhang, Zijia
    Sun, Wei
    Zou, Kaixin
    Computer Engineering and Applications, 2024, 60 (06) : 100 - 109
  • [10] Small-Target Detection Based on Improved YOLOv8 for Infrared Imagery
    Wang, Huicong
    Ma, Kaijun
    Yue, Juan
    Li, Yuhan
    Huang, Jiaxin
    Liu, Jie
    Li, Linhan
    Wang, Xiaoyu
    Cai, Nengbin
    Gao, Sili
    ELECTRONICS, 2025, 14 (05):