Low-Dose CT Denoising Using Pseudo-CT Image Pairs

被引:2
|
作者
Won, Dongkyu [1 ]
Jung, Euijin [1 ]
An, Sion [1 ]
Chikontwe, Philip [1 ]
Park, Sang Hyun [1 ]
机构
[1] DGIST, Dept Robot Engn, Daegu, South Korea
关键词
RESTORATION;
D O I
10.1007/978-3-030-87602-9_1
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, self-supervised learning methods able to perform image denoising without ground truth labels have been proposed. These methods create low-quality images by adding random or Gaussian noise to images and then train a model for denoising. Ideally, it would be beneficial if one can generate high-quality CT images with only a few training samples via self-supervision. However, the performance of CT denoising is generally limited due to the complexity of CT noise. To address this problem, we propose a novel self-supervised learning-based CT denoising method. In particular, we train pre-train CT denoising and noise models that can predict CT noise from Low-dose CT (LDCT) using available LDCT and Normal-dose CT (NDCT) pairs. For a given test LDCT, we generate Pseudo-LDCT and NDCT pairs using the pre-trained denoising and noise models and then update the parameters of the denoising model using these pairs to remove noise in the test LDCT. To make realistic Pseudo LDCT, we train multiple noise models from individual images and generate the noise using the ensemble of noise models. We evaluate our method on the 2016 AAPM Low-Dose CT Grand Challenge dataset. The proposed ensemble noise models can generate realistic CT noise, and thus our method significantly improves the denoising performance existing denoising models trained by supervised- and self-supervised learning.
引用
下载
收藏
页码:1 / 10
页数:10
相关论文
共 50 条
  • [21] Self-Supervised Deep Learning for Low-Dose CT Image Denoising
    Bai, T.
    Nguyen, D.
    Jiang, S.
    MEDICAL PHYSICS, 2020, 47 (06) : E658 - E658
  • [22] Denoising for Low-Dose CT Image by Discriminative Weighted Nuclear Norm Minimization
    Jia, Lina
    Zhang, Quan
    Shang, Yu
    Wang, Yanling
    Liu, Yi
    Wang, Na
    Gui, Zhiguo
    Yang, Guanru
    IEEE ACCESS, 2018, 6 : 46179 - 46193
  • [23] Low-Dose CT Denoising Algorithm Based on Image Cartoon Texture Decomposition
    Hao Chen
    Yi Liu
    Pengcheng Zhang
    Jiaqi Kang
    Zhiyuan Li
    Weiting Cheng
    Zhiguo Gui
    Circuits, Systems, and Signal Processing, 2024, 43 : 3073 - 3101
  • [24] Low-Dose CT Denoising Algorithm Based on Image Cartoon Texture Decomposition
    Chen, Hao
    Liu, Yi
    Zhang, Pengcheng
    Kang, Jiaqi
    Li, Zhiyuan
    Cheng, Weiting
    Gui, Zhiguo
    CIRCUITS SYSTEMS AND SIGNAL PROCESSING, 2024, 43 (05) : 3073 - 3101
  • [25] Low-Dose CT Image Denoising Method Based on Convolutional Neural Network
    Zhang Yungang
    Yi Benshun
    Wu Chenyue
    Feng Yu
    ACTA OPTICA SINICA, 2018, 38 (04)
  • [26] Low-Dose CT Image Denoising with Improving WGAN and Hybrid Loss Function
    Li, Zhihua
    Shi, Weili
    Xing, Qiwei
    Miao, Yu
    He, Wei
    Yang, Huamin
    Jiang, Zhengang
    COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2021, 2021
  • [27] CROSS DOMAIN LOW-DOSE CT IMAGE DENOISING WITH SEMANTIC INFORMATION ALIGNMENT
    Huang, Jiaxin
    Chen, Kecheng
    Sun, Jiayu
    Pu, Xiaorong
    Ren, Yazhou
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4228 - 4232
  • [28] Unsupervised low-dose CT denoising using bidirectional contrastive network
    Zhang, Yuanke
    Zhang, Rui
    Cao, Rujuan
    Xu, Fan
    Jiang, Fengjuan
    Meng, Jing
    Ma, Fei
    Guo, Yanfei
    Liu, Jianlei
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 251
  • [29] Low-dose CT Denoising with Dilated Residual Network
    Gholizadeh-Ansari, Maryam
    Alirezaie, Javad
    Babyn, Paul
    2018 40TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2018, : 5117 - 5120
  • [30] Transformer With Double Enhancement for Low-Dose CT Denoising
    Li, Haoran
    Yang, Xiaomin
    Yang, Sihan
    Wang, Daoyong
    Jeon, Gwanggil
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 4660 - 4671