Nanoscale optical nonreciprocity with nonlinear metasurfaces

被引:2
|
作者
Tripathi, Aditya [1 ]
Ugwu, Chibuzor Fabian [2 ]
Asadchy, Viktar S. [3 ,4 ]
Faniayeu, Ihar [5 ]
Kravchenko, Ivan [6 ]
Fan, Shanhui [3 ]
Kivshar, Yuri [1 ]
Valentine, Jason [2 ]
Kruk, Sergey S. [1 ]
机构
[1] Australian Natl Univ, Nonlinear Phys Ctr, Res Sch Phys, Canberra, ACT, Australia
[2] Vanderbilt Univ, Dept Mech Engn, Nashville, TN USA
[3] Stanford Univ, Dept Elect Engn, Ginzton Lab, Stanford, CA USA
[4] Aalto Univ, Dept Elect & Nanoengn, Espoo, Finland
[5] Univ Gothenburg, Dept Phys, Gothenburg, Sweden
[6] Oak Ridge Natl Lab, Ctr Nanophase Mat Sci, Oak Ridge, TN USA
关键词
PHASE-TRANSITION; ISOLATORS; VO2;
D O I
10.1038/s41467-024-49436-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Optical nonreciprocity is manifested as a difference in the transmission of light for the opposite directions of excitation. Nonreciprocal optics is traditionally realized with relatively bulky components such as optical isolators based on the Faraday rotation, hindering the miniaturization and integration of optical systems. Here we demonstrate free-space nonreciprocal transmission through a metasurface comprised of a two-dimensional array of nanoresonators made of silicon hybridized with vanadium dioxide (VO2). This effect arises from the magneto-electric coupling between Mie modes supported by the resonator. Nonreciprocal response of the nanoresonators occurs without the need for external bias; instead, reciprocity is broken by the incident light triggering the VO2 phase transition for only one direction of incidence. Nonreciprocal transmission is broadband covering over 100 nm in the telecommunication range in the vicinity of lambda = 1.5 mu m. Each nanoresonator unit cell occupies only similar to 0.1 lambda (3) in volume, with the metasurface thickness measuring about half-a-micron. Our self-biased nanoresonators exhibit nonreciprocity down to very low levels of intensity on the order of 150 W/cm(2) or a mu W per nanoresonator. We estimate picosecond-scale transmission fall times and sub-microsecond scale transmission rise. Our demonstration brings low-power, broadband and bias-free optical nonreciprocity to the nanoscale.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Nonlinear Chiral Metasurfaces Based on the Optical Kerr Effect
    Kang, Lei
    Wu, Yuhao
    Werner, Douglas H.
    [J]. ADVANCED OPTICAL MATERIALS, 2023, 11 (10)
  • [22] Plasmonic Nonlinear Metasurfaces for Building an Optical Spiking Neuron
    Lin, Fengbin
    Gui, Lili
    Wei, Yi
    Xu, Kun
    [J]. 2022 ASIA COMMUNICATIONS AND PHOTONICS CONFERENCE, ACP, 2022, : 2143 - 2145
  • [23] Coherent Magnons with Giant Nonreciprocity at Nanoscale Wavelengths
    Gallardo, Rodolfo
    Weigand, Markus
    Schultheiss, Katrin
    Kakay, Attila
    Mattheis, Roland
    Raabe, Jorg
    Schuetz, Gisela
    Deac, Alina
    Lindner, Juergen
    Wintz, Sebastian
    [J]. ACS NANO, 2024, 18 (07) : 5249 - 5257
  • [24] DEMONSTRATION OF NONLINEAR NONRECIPROCITY AND LOGIC OPERATIONS WITH A TWISTED BIREFRINGENT OPTICAL-FIBER
    FERRO, P
    TRILLO, S
    WABNITZ, S
    [J]. OPTICS LETTERS, 1994, 19 (04) : 263 - 265
  • [25] Emulating Nonreciprocity with Spatially Dispersive Metasurfaces Excited at Oblique Incidence
    Pfeiffer, Carl
    Grbic, Anthony
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (07)
  • [26] Nonreciprocity Based on Nonlinear Resonances
    Sounas, Dimitrios L.
    Alu, Andrea
    [J]. IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2018, 17 (11): : 1958 - 1962
  • [27] Nonlinear optical nonreciprocity in a surface plasmon–exciton coupled asymmetric cavity system
    Shengfa Fan
    Fengxue Zhou
    Fei Xu
    Yihong Qi
    Yueping Niu
    Shangqing Gong
    [J]. The European Physical Journal D, 2022, 76
  • [28] Focusing far-field nanoscale optical needles by planar nanostructured metasurfaces
    Liu, Tao
    Wang, Tong
    Yang, Shuming
    Jiang, Zhuangde
    [J]. OPTICS COMMUNICATIONS, 2016, 372 : 118 - 122
  • [29] Nanoscale Nonlinear Circuit Elements at Optical Frequencies
    Saeidi, Chiya
    van der Weide, Daniel
    [J]. IEEE TRANSACTIONS ON NANOTECHNOLOGY, 2018, 17 (03) : 611 - 613
  • [30] Silicon metasurfaces with tunable electromagnetic resonances for nonlinear optical conversion
    Fagiani, L.
    Zilli, A.
    Tognazzi, A.
    Mafakheri, E.
    Okhlopkov, K.
    Rocco, D.
    Shcherbakov, M.
    Fedyanin, A.
    De Angelis, C.
    Finazzi, M.
    Celebrano, M.
    Bollani, M.
    [J]. NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2021, 44 (4-5):