Understanding the Feature Norm for Out-of-Distribution Detection

被引:4
|
作者
Park, Jaewoo [1 ,2 ]
Chai, Jacky Chen Long [1 ]
Yoon, Jaeho [1 ]
Teoh, Andrew Beng Jin [1 ]
机构
[1] Yonsei Univ, Seoul, South Korea
[2] AiV Co, Houston, TX USA
基金
新加坡国家研究基金会;
关键词
D O I
10.1109/ICCV51070.2023.00150
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
A neural network trained on a classification dataset often exhibits a higher vector norm of hidden layer features for in-distribution ( ID) samples, while producing relatively lower norm values on unseen instances from outof-distribution (OOD). Despite this intriguing phenomenon being utilized in many applications, the underlying cause has not been thoroughly investigated. In this study, we demystify this very phenomenon by scrutinizing the discriminative structures concealed in the intermediate layers of a neural network. Our analysis leads to the following discoveries: ( 1) The feature norm is a confidence value of a classifier hidden in the network layer, specifically its maximum logit. Hence, the feature norm distinguishes OOD from ID in the same manner that a classifier confidence does. (2) The feature norm is class-agnostic, thus it can detect OOD samples across diverse discriminative models. (3) The conventional feature norm fails to capture the deactivation tendency of hidden layer neurons, which may lead to misidentification of ID samples as OOD instances. To resolve this drawback, we propose a novel negative-aware norm (NAN) that can capture both the activation and deactivation tendencies of hidden layer neurons. We conduct extensive experiments on NAN, demonstrating its efficacy and compatibility with existing OOD detectors, as well as its capability in label-free environments.
引用
收藏
页码:1557 / 1567
页数:11
相关论文
共 50 条
  • [41] Your Out-of-Distribution Detection Method is Not Robust!
    Azizmalayeri, Mohammad
    Moakhar, Arshia Soltani
    Zarei, Arman
    Zohrabi, Reihaneh
    Manzuri, Mohammad Taghi
    Rohban, Mohammad Hossein
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [42] Learning to Augment Distributions for Out-of-Distribution Detection
    Wang, Qizhou
    Fang, Zhen
    Zhang, Yonggang
    Liu, Feng
    Li, Yixuan
    Han, Bo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 36 (NEURIPS 2023), 2023,
  • [43] Latent Transformer Models for out-of-distribution detection
    Graham, Mark S.
    Tudosiu, Petru-Daniel
    Wright, Paul
    Pinaya, Walter Hugo Lopez
    Teikari, Petteri
    Patel, Ashay
    U-King-Im, Jean-Marie
    Mah, Yee H.
    Teo, James T.
    Jager, Hans Rolf
    Werring, David
    Rees, Geraint
    Nachev, Parashkev
    Ourselin, Sebastien
    Cardoso, M. Jorge
    MEDICAL IMAGE ANALYSIS, 2023, 90
  • [44] CONTINUAL LEARNING FOR OUT-OF-DISTRIBUTION PEDESTRIAN DETECTION
    Molahasani, Mahdiyar
    Etemad, Ali
    Greenspan, Michael
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 2685 - 2689
  • [45] Boosting Out-of-distribution Detection with Typical Features
    Zhu, Yao
    Chen, Yuefeng
    Xie, Chuanlong
    Li, Xiaodan
    Zhang, Rong
    Xue, Hui
    Tian, Xiang
    Zheng, Bolun
    Chen, Yaowu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [46] Out-of-distribution detection by regaining lost clues
    Zhao, Zhilin
    Cao, Longbing
    Yu, Philip S.
    ARTIFICIAL INTELLIGENCE, 2025, 339
  • [47] Ensemble-Based Out-of-Distribution Detection
    Yang, Donghun
    Mai Ngoc, Kien
    Shin, Iksoo
    Lee, Kyong-Ha
    Hwang, Myunggwon
    ELECTRONICS, 2021, 10 (05) : 1 - 12
  • [48] RetroOOD: Understanding Out-of-Distribution Generalization in Retrosynthesis Prediction
    Yu, Yemin
    Yuan, Luotian
    Wei, Ying
    Gao, Hanyu
    Wu, Fei
    Wang, Zhihua
    Ye, Xinhai
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 1, 2024, : 374 - 382
  • [49] Full-Spectrum Out-of-Distribution Detection
    Jingkang Yang
    Kaiyang Zhou
    Ziwei Liu
    International Journal of Computer Vision, 2023, 131 : 2607 - 2622
  • [50] Leveraging Visual Attention for out-of-distribution Detection
    Cultrera, Luca
    Seidenari, Lorenzo
    Del Bimbo, Alberto
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS, ICCVW, 2023, : 4449 - 4458