Harnessing the deep learning power of foundation models in single-cell omics

被引:0
|
作者
Ma, Qin [1 ,2 ]
Jiang, Yi [1 ]
Cheng, Hao [1 ]
Xu, Dong [3 ]
机构
[1] Ohio State Univ, Coll Med, Dept Biomed Informat, Columbus, OH 43210 USA
[2] Ohio State Univ, Pelotonia Inst Immuno Oncol, James Comprehens Canc Ctr, Columbus, OH 43210 USA
[3] Univ Missouri, Bond Life Sci Ctr, Dept Elect Engn & Comp Sci, Columbia, MO USA
关键词
D O I
10.1038/s41580-024-00756-6
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Foundation models hold great promise for analyzing single-cell omics data, yet various challenges remain that require further advancements. In this Comment, we discuss the progress, limitations and best practices in applying foundation models to interrogate data and improve downstream tasks in single-cell omics. This Comment discusses the progress, limitations and best practices in applying foundation models to single-cell omics data.
引用
收藏
页码:593 / 594
页数:2
相关论文
共 50 条
  • [1] Deep generative models in single-cell omics
    Rivero-Garcia, Inés
    Torres, Miguel
    Sánchez-Cabo, Fátima
    [J]. Computers in Biology and Medicine, 2024, 176
  • [2] Interpretable deep learning in single-cell omics
    Wagle, Manoj M.
    Long, Siqu
    Chen, Carissa
    Liu, Chunlei
    Yang, Pengyi
    [J]. BIOINFORMATICS, 2024, 40 (06)
  • [3] The performance of deep generative models for learning joint embeddings of single-cell multi-omics data
    Brombacher, Eva
    Hackenberg, Maren
    Kreutz, Clemens
    Binder, Harald
    Treppner, Martin
    [J]. FRONTIERS IN MOLECULAR BIOSCIENCES, 2022, 9
  • [4] Single-cell multimodal omics: the power of many
    Zhu, Chenxu
    Preissl, Sebastian
    Ren, Bing
    [J]. NATURE METHODS, 2020, 17 (01) : 11 - 14
  • [5] Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
    Yu, Lijia
    Liu, Chunlei
    Yang, Jean Yee Hwa
    Yang, Pengyi
    [J]. BIOINFORMATICS, 2023, 39 (06)
  • [6] Single-cell multimodal omics: the power of many
    Chenxu Zhu
    Sebastian Preissl
    Bing Ren
    [J]. Nature Methods, 2020, 17 : 11 - 14
  • [7] Machine learning for perturbational single-cell omics
    Ji, Yuge
    Lotfollahi, Mohammad
    Wolf, F. Alexander
    Theis, Fabian J.
    [J]. CELL SYSTEMS, 2021, 12 (06) : 522 - 537
  • [8] Multimodal deep learning approaches for single-cell multi-omics data integration
    Athaya, Tasbiraha
    Ripan, Rony Chowdhury
    Li, Xiaoman
    Hu, Haiyan
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [9] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Xiang Lin
    Tian Tian
    Zhi Wei
    Hakon Hakonarson
    [J]. Nature Communications, 13
  • [10] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Lin, Xiang
    Tian, Tian
    Wei, Zhi
    Hakonarson, Hakon
    [J]. NATURE COMMUNICATIONS, 2022, 13 (01)