Clustering of single-cell multi-omics data with a multimodal deep learning method

被引:27
|
作者
Lin, Xiang [1 ]
Tian, Tian [2 ]
Wei, Zhi [1 ]
Hakonarson, Hakon [2 ,3 ]
机构
[1] New Jersey Inst Technol, Dept Comp Sci, Newark, NJ 07102 USA
[2] Childrens Hosp Philadelphia, Ctr Appl Genom, Philadelphia, PA USA
[3] Univ Penn, Perelman Sch Med, Div Human Genet, Dept Pediat, Philadelphia, PA USA
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
RNA-SEQ DATA; CHROMATIN ACCESSIBILITY; NORMALIZATION; TECHNOLOGIES; PROTEINS;
D O I
10.1038/s41467-022-35031-9
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Single-cell multimodal sequencing technologies are developed to simultaneously profile different modalities of data in the same cell. It provides a unique opportunity to jointly analyze multimodal data at the single-cell level for the identification of distinct cell types. A correct clustering result is essential for the downstream complex biological functional studies. However, combining different data sources for clustering analysis of single-cell multimodal data remains a statistical and computational challenge. Here, we develop a novel multimodal deep learning method, scMDC, for single-cell multi-omics data clustering analysis. scMDC is an end-to-end deep model that explicitly characterizes different data sources and jointly learns latent features of deep embedding for clustering analysis. Extensive simulation and real-data experiments reveal that scMDC outperforms existing single-cell single-modal and multimodal clustering methods on different single-cell multimodal datasets. The linear scalability of running time makes scMDC a promising method for analyzing large multimodal datasets.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Clustering of single-cell multi-omics data with a multimodal deep learning method
    Xiang Lin
    Tian Tian
    Zhi Wei
    Hakon Hakonarson
    [J]. Nature Communications, 13
  • [2] Multimodal deep learning approaches for single-cell multi-omics data integration
    Athaya, Tasbiraha
    Ripan, Rony Chowdhury
    Li, Xiaoman
    Hu, Haiyan
    [J]. BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [3] Clustering single-cell multi-omics data with MoClust
    Yuan, Musu
    Chen, Liang
    Deng, Minghua
    [J]. BIOINFORMATICS, 2023, 39 (01)
  • [4] Ensemble deep learning of embeddings for clustering multimodal single-cell omics data
    Yu, Lijia
    Liu, Chunlei
    Yang, Jean Yee Hwa
    Yang, Pengyi
    [J]. BIOINFORMATICS, 2023, 39 (06)
  • [5] scMoC: single-cell multi-omics clustering
    Eltager, Mostafa
    Abdelaal, Tamim
    Mahfouz, Ahmed
    Reinders, Marcel J. T.
    [J]. BIOINFORMATICS ADVANCES, 2022, 2 (01):
  • [6] Progress in single-cell multimodal sequencing and multi-omics data integration
    Wang, Xuefei
    Wu, Xinchao
    Hong, Ni
    Jin, Wenfei
    [J]. BIOPHYSICAL REVIEWS, 2024, 16 (01) : 13 - 28
  • [7] DEMOC: a deep embedded multi-omics learning approach for clustering single-cell CITE-seq data
    Zou, Guanhua
    Lin, Yilong
    Han, Tianyang
    Le Ou-Yang
    [J]. BRIEFINGS IN BIOINFORMATICS, 2022, 23 (05)
  • [8] Progress in single-cell multimodal sequencing and multi-omics data integration
    Xuefei Wang
    Xinchao Wu
    Ni Hong
    Wenfei Jin
    [J]. Biophysical Reviews, 2024, 16 : 13 - 28
  • [9] Spectral clustering of single-cell multi-omics data on multilayer graphs
    Zhang, Shuyi
    Leistico, Jacob R.
    Cho, Raymond J.
    Cheng, Jeffrey B.
    Song, Jun S.
    [J]. BIOINFORMATICS, 2022, 38 (14) : 3600 - 3608
  • [10] Clustering single-cell multimodal omics data with jrSiCKLSNMF
    Ellis, Dorothy
    Roy, Arkaprava
    Datta, Susmita
    [J]. FRONTIERS IN GENETICS, 2023, 14