Spectral Planting and the Hardness of Refuting Cuts, Colorability, and Communities in Random Graphs

被引:0
|
作者
Bandeira, Afonso S. [1 ]
Banks, Jess [2 ]
Kunisky, Dmitriy [3 ]
Moore, Cristopher [4 ]
Wein, Alexander S. [3 ]
机构
[1] Department of Mathematics, ETH Zurich, Switzerland
[2] Department of Mathematics, UC Berkeley, United States
[3] Department of Mathematics, Courant Institute of Mathematical Sciences, NYU, United States
[4] Santa Fe Institute, United States
来源
关键词
Compilation and indexing terms; Copyright 2024 Elsevier Inc;
D O I
暂无
中图分类号
学科分类号
摘要
Chromatic number - Colorability - Computational hardness - Low degree - Plantings - Quiet planting - Random graphs - Refutation - Regular graphs - Spectral methods
引用
收藏
页码:410 / 473
相关论文
共 50 条
  • [21] The Power of Consensus: Random Graphs Have No Communities
    Campigotto, Romain
    Guillaume, Jean-Loup
    Seifi, Massoud
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, : 278 - 282
  • [22] A Spectral Clustering Approach To Finding Communities in Graphs
    White, Scott
    Smyth, Padhraic
    PROCEEDINGS OF THE FIFTH SIAM INTERNATIONAL CONFERENCE ON DATA MINING, 2005, : 274 - 285
  • [23] On the hardness of finding balanced independent sets in random bipartite graphs
    Perkins, Will
    Wang, Yuzhou
    PROCEEDINGS OF THE 2024 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2024, : 2376 - 2397
  • [24] Hardness results and spectral techniques for combinatorial problems on circulant graphs
    Codenotti, B
    Gerace, I
    Vigna, S
    LINEAR ALGEBRA AND ITS APPLICATIONS, 1998, 285 (1-3) : 123 - 142
  • [25] An adaptive spectral heuristic for partitioning random graphs
    Coja-Oghlan, Amin
    AUTOMATA, LANGUAGES AND PROGRAMMING, PT 1, 2006, 4051 : 691 - 702
  • [26] THE SPECTRAL GAP OF DENSE RANDOM REGULAR GRAPHS
    Tikhomirov, Konstantin
    Youssef, Pierre
    ANNALS OF PROBABILITY, 2019, 47 (01): : 362 - 419
  • [27] The graph spectra and spectral moments of random graphs
    Ghanooni, Naghmeh
    Haifani, Fajar
    Kleinbauer, Marsha
    DISCRETE APPLIED MATHEMATICS, 2019, 269 : 32 - 40
  • [28] HAUSDORFF AND SPECTRAL DIMENSION OF INFINITE RANDOM GRAPHS
    Durhuus, Bergfinnur
    ACTA PHYSICA POLONICA B, 2009, 40 (12): : 3509 - 3532
  • [29] Spectral and localization properties of random bipartite graphs
    Martínez-Martínez C.T.
    Méndez-Bermúdez J.A.
    Moreno Y.
    Pineda-Pineda J.J.
    Sigarreta J.M.
    Chaos, Solitons and Fractals: X, 2019, 3
  • [30] Spectral classes of regular, random, and empirical graphs
    Gu, Jiao
    Jost, Juergen
    Liu, Shiping
    Stadler, Peter F.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 489 : 30 - 49