Geometric deep learning for enhanced quantitative analysis of microstructures in X-ray computed tomography data

被引:0
|
作者
Lapenna, M. [1 ]
Tsamos, A. [2 ,3 ]
Faglioni, F. [4 ]
Fioresi, R. [5 ]
Zanchetta, F. [5 ]
Bruno, G. [2 ,3 ]
机构
[1] Unibo, DIFA, Via Irnerio 46, I-40126 Bologna, Italy
[2] BAM, Bundesanstalt Materialforsch & Prufung, Unter Eichen 87, D-12205 Berlin, Germany
[3] Univ Potsdam, Inst Phys & Astron, Karl Liebknecht Str 24-25, D-14476 Potsdam, Germany
[4] Unimore, DGSC, Via Campi 103, I-41100 Modena, Italy
[5] Unibo, Fabit, Via San Donato 15, I-40127 Bologna, Italy
关键词
Geometric deep learning; Segmentation; Microstructure; X-ray computed tomography; Al-Si metal matrix composites;
D O I
10.1007/s42452-024-05985-0
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Quantitative microstructural analysis of XCT 3D images is key for quality assurance of materials and components. In this paper we implement a Graph Convolutional Neural Network (GCNN) architecture to segment a complex Al-Si Metal Matrix composite XCT volume (3D image). We train the model on a synthetic dataset and we assess its performance on both synthetic and experimental, manually-labeled, datasets. Our simple GCNN shows a comparable performance, measured via the Dice score, to more standard machine learning methods, but uses a greatly reduced number of parameters (less than 1/10 of parameters), features low training time, and needs little hardware resources. Our GCNN thus achieves a cost-effective reliable segmentation. We present a novel Graph Convolutional Neural Network approach to segment a 3D image of a complex Al-Si Metal Matrix composite. Training on synthetic datasets shows a semantic understanding of the ground truth labels of manually-labeled experimental images. Our simple Graph Neural Network shows a comparable performance to standard methods, using a reduced number of parameters, low training time, towards cost-effective reliable segmentation.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] X-ray computed tomography
    Withers, Philip J.
    Bouman, Charles
    Carmignato, Simone
    Cnudde, Veerle
    Grimaldi, David
    Hagen, Charlotte K.
    Maire, Eric
    Manley, Marena
    Du Plessis, Anton
    Stock, Stuart R.
    [J]. NATURE REVIEWS METHODS PRIMERS, 2021, 1 (01):
  • [22] X-ray computed tomography
    [J]. Nature Reviews Methods Primers, 1
  • [23] X-RAY COMPUTED TOMOGRAPHY
    HORN, E
    [J]. ELECTRONICS AND POWER, 1978, 24 (03): : 181 - 181
  • [24] Quantitative X-ray phase contrast computed tomography with grating interferometryBiomedical applications of quantitative X-ray grating-based phase contrast computed tomography
    Lorenz Birnbacher
    Eva-Maria Braig
    Daniela Pfeiffer
    Franz Pfeiffer
    Julia Herzen
    [J]. European Journal of Nuclear Medicine and Molecular Imaging, 2021, 48 : 4171 - 4188
  • [25] Deep Interactive Denoiser (DID) for X-Ray Computed Tomography
    Bai, Ti
    Wang, Biling
    Nguyen, Dan
    Wang, Bao
    Dong, Bin
    Cong, Wenxiang
    Kalra, Mannudeep K.
    Jiang, Steve
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2021, 40 (11) : 2965 - 2975
  • [26] Automated Quantitative Bone Analysis in In Vivo X-ray Micro-Computed Tomography
    Behrooz, Ali
    Kask, Peet
    Meganck, Jeff
    Kempner, Joshua
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2017, 36 (09) : 1955 - 1965
  • [27] Quantitative analysis of scaling error compensation methods in dimensional X-ray computed tomography
    Mueller, P.
    Hiller, J.
    Dai, Y.
    Andreasen, J. L.
    Hansen, H. N.
    De Chiffre, L.
    [J]. CIRP JOURNAL OF MANUFACTURING SCIENCE AND TECHNOLOGY, 2015, 10 (68-76) : 68 - 76
  • [28] CHALLENGES ASSOCIATED WITH THE QUANTITATIVE ANALYSIS OF DUCTILE DAMAGE USING X-RAY COMPUTED TOMOGRAPHY
    Cooper, Adam J.
    Burnett, Timothy L.
    Tuck, Olivia C. G.
    Sherry, Andrew H.
    [J]. PROCEEDINGS OF THE ASME PRESSURE VESSELS AND PIPING CONFERENCE, 2018, VOL 6B, 2019,
  • [29] Enhanced analysis of experimental x-ray spectra through deep learning
    Mariscal, D. A.
    Krauland, C. M.
    Djordjevic, B. Z.
    Scott, G. G.
    Simpson, R. A.
    Grace, E. S.
    Swanson, K.
    Ma, T.
    [J]. PHYSICS OF PLASMAS, 2022, 29 (09)
  • [30] Tree Core Analysis with X-ray Computed Tomography
    De Mil, Tom
    Van den Bulcke, Jan
    [J]. JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2023, (199):