Polygenic risk score portability for common diseases across genetically diverse populations

被引:1
|
作者
Moreno-Grau, Sonia [1 ,2 ]
Vernekar, Manvi [3 ]
Lopez-Pineda, Arturo [1 ,4 ,5 ]
Mas-Montserrat, Daniel [1 ]
Barrabes, Miriam [1 ]
Quinto-Cortes, Consuelo D. [1 ]
Moatamed, Babak [1 ]
Lee, Ming Ta Michael [1 ]
Yu, Zhenning [3 ]
Numakura, Kensuke [3 ]
Matsuda, Yuta [3 ]
Wall, Jeffrey D. [1 ]
Ioannidis, Alexander G. [1 ,2 ,6 ]
Katsanis, Nicholas [1 ]
Takano, Tomohiro [3 ,7 ]
Bustamante, Carlos D. [1 ,2 ]
机构
[1] Galatea Bio Inc, 14350 Commerce Way, Miami Lakes, FL 33146 USA
[2] Stanford Univ, Sch Med, Dept Biomed Data Sci, 1265 Welch Rd, Stanford, CA 94305 USA
[3] Genomelink Inc, 2150 Shattuck Ave, Berkeley, CA 94704 USA
[4] Amphora Hlth, Batallon Independencia 80, Morelia 58260, Michoacan, Mexico
[5] Univ Nacl Autonoma Mexico, Escuela Nacl Estudios Super, Unidad Morelia, Antigua Carretera Patzcuaro 8701, Morelia 58190, Michoacan, Mexico
[6] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA
[7] Japan Awakens Japan KK Japanese subsidiary Genomel, 2-11-3,Meguro Ku, Tokyo 1530063, Japan
关键词
PREDICTION; ACCURACY; PROJECT; BIOBANK;
D O I
10.1186/s40246-024-00664-y
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
BackgroundPolygenic risk scores (PRS) derived from European individuals have reduced portability across global populations, limiting their clinical implementation at worldwide scale. Here, we investigate the performance of a wide range of PRS models across four ancestry groups (Africans, Europeans, East Asians, and South Asians) for 14 conditions of high-medical interest.MethodsTo select the best-performing model per trait, we first compared PRS performances for publicly available scores, and constructed new models using different methods (LDpred2, PRS-CSx and SNPnet). We used 285 K European individuals from the UK Biobank (UKBB) for training and 18 K, including diverse ancestries, for testing. We then evaluated PRS portability for the best models in Europeans and compared their accuracies with respect to the best PRS per ancestry. Finally, we validated the selected PRS models using an independent set of 8,417 individuals from Biobank of the Americas-Genomelink (BbofA-GL); and performed a PRS-Phewas.ResultsWe confirmed a decay in PRS performances relative to Europeans when the evaluation was conducted using the best-PRS model for Europeans (51.3% for South Asians, 46.6% for East Asians and 39.4% for Africans). We observed an improvement in the PRS performances when specifically selecting ancestry specific PRS models (phenotype variance increase: 1.62 for Africans, 1.40 for South Asians and 0.96 for East Asians). Additionally, when we selected the optimal model conditional on ancestry for CAD, HDL-C and LDL-C, hypertension, hypothyroidism and T2D, PRS performance for studied populations was more comparable to what was observed in Europeans. Finally, we were able to independently validate tested models for Europeans, and conducted a PRS-Phewas, identifying cross-trait interplay between cardiometabolic conditions, and between immune-mediated components.ConclusionOur work comprehensively evaluated PRS accuracy across a wide range of phenotypes, reducing the uncertainty with respect to which PRS model to choose and in which ancestry group. This evaluation has let us identify specific conditions where implementing risk-prioritization strategies could have practical utility across diverse ancestral groups, contributing to democratizing the implementation of PRS.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Inclusion of variants discovered from diverse populations improves polygenic risk score transferability
    Cavazos, Taylor B.
    Witte, John S.
    HUMAN GENETICS AND GENOMICS ADVANCES, 2021, 2 (01):
  • [12] Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries
    Yanyu Liang
    Milton Pividori
    Ani Manichaikul
    Abraham A. Palmer
    Nancy J. Cox
    Heather E. Wheeler
    Hae Kyung Im
    Genome Biology, 23
  • [13] Polygenic transcriptome risk scores (PTRS) can improve portability of polygenic risk scores across ancestries
    Liang, Yanyu
    Pividori, Milton
    Manichaikul, Ani
    Palmer, Abraham A.
    Cox, Nancy J.
    Wheeler, Heather E.
    Im, Hae Kyung
    GENOME BIOLOGY, 2022, 23 (01)
  • [14] Systematic comparison of family history and polygenic risk across 24 common diseases
    Mars, Nina
    Lindbohm, Joni V.
    Parolo, Pietro della Briotta
    Widen, Elisabeth
    Kaprio, Jaakko
    Palotie, Aarno
    FinnGen
    Ripatti, Samuli
    AMERICAN JOURNAL OF HUMAN GENETICS, 2022, 109 (12) : 2152 - 2162
  • [15] Polygenic Risk Score for Glaucoma in African Populations
    Chang-Wolf, Jennifer
    Driessen, Sjoerd
    Sanyiwa, Anna
    Hassan, G.
    Cook, Colin
    Williams, Susan
    Akafo, Stephen
    Ashaye, Adeyinka
    Klaver, Caroline
    Hauser, Michael
    Thiadens, Alberta
    Bonnemaijer, Pieter
    INVESTIGATIVE OPHTHALMOLOGY & VISUAL SCIENCE, 2023, 64 (08)
  • [16] Transferability of polygenic risk score among diverse ancestries
    Cheng, Xi
    Zhao, Sen
    CLINICAL AND TRANSLATIONAL DISCOVERY, 2023, 3 (04):
  • [17] Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations
    Ge, Tian
    Irvin, Marguerite R.
    Patki, Amit
    Srinivasasainagendra, Vinodh
    Lin, Yen-Feng
    Tiwari, Hemant K.
    Armstrong, Nicole D.
    Benoit, Barbara
    Chen, Chia-Yen
    Choi, Karmel W.
    Cimino, James J.
    Davis, Brittney H.
    Dikilitas, Ozan
    Etheridge, Bethany
    Feng, Yen-Chen Anne
    Gainer, Vivian
    Huang, Hailiang
    Jarvik, Gail P.
    Kachulis, Christopher
    Kenny, Eimear E.
    Khan, Atlas
    Kiryluk, Krzysztof
    Kottyan, Leah
    Kullo, Iftikhar J.
    Lange, Christoph
    Lennon, Niall
    Leong, Aaron
    Malolepsza, Edyta
    Miles, Ayme D.
    Murphy, Shawn
    Namjou, Bahram
    Narayan, Renuka
    O'Connor, Mark J.
    Pacheco, Jennifer A.
    Perez, Emma
    Rasmussen-Torvik, Laura J.
    Rosenthal, Elisabeth A.
    Schaid, Daniel
    Stamou, Maria
    Udler, Miriam S.
    Wei, Wei-Qi
    Weiss, Scott T.
    Ng, Maggie C. Y.
    Smoller, Jordan W.
    Lebo, Matthew S.
    Meigs, James B.
    Limdi, Nita A.
    Karlson, Elizabeth W.
    GENOME MEDICINE, 2022, 14 (01)
  • [18] Polygenic risk scores and the prediction of common diseases
    Ala-Korpela, Mika
    Holmes, Michael V.
    INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2020, 49 (01) : 1 - 3
  • [19] Development and validation of a trans-ancestry polygenic risk score for type 2 diabetes in diverse populations
    Tian Ge
    Marguerite R. Irvin
    Amit Patki
    Vinodh Srinivasasainagendra
    Yen-Feng Lin
    Hemant K. Tiwari
    Nicole D. Armstrong
    Barbara Benoit
    Chia-Yen Chen
    Karmel W. Choi
    James J. Cimino
    Brittney H. Davis
    Ozan Dikilitas
    Bethany Etheridge
    Yen-Chen Anne Feng
    Vivian Gainer
    Hailiang Huang
    Gail P. Jarvik
    Christopher Kachulis
    Eimear E. Kenny
    Atlas Khan
    Krzysztof Kiryluk
    Leah Kottyan
    Iftikhar J. Kullo
    Christoph Lange
    Niall Lennon
    Aaron Leong
    Edyta Malolepsza
    Ayme D. Miles
    Shawn Murphy
    Bahram Namjou
    Renuka Narayan
    Mark J. O’Connor
    Jennifer A. Pacheco
    Emma Perez
    Laura J. Rasmussen-Torvik
    Elisabeth A. Rosenthal
    Daniel Schaid
    Maria Stamou
    Miriam S. Udler
    Wei-Qi Wei
    Scott T. Weiss
    Maggie C. Y. Ng
    Jordan W. Smoller
    Matthew S. Lebo
    James B. Meigs
    Nita A. Limdi
    Elizabeth W. Karlson
    Genome Medicine, 14
  • [20] Polygenic Score for Physical Activity Is Associated with Multiple Common Diseases
    Sillanpaa, Elina
    Palviainen, Teemu
    Ripatti, Samuli
    Kujala, Urho M.
    Kaprio, Jaakko
    MEDICINE & SCIENCE IN SPORTS & EXERCISE, 2022, 54 (02) : 280 - 287