Galaxy stellar and total mass estimation using machine learning

被引:4
|
作者
Chu, Jiani [1 ]
Tang, Hongming [1 ]
Xu, Dandan [1 ]
Lu, Shengdong [2 ]
Long, Richard [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Astron, Beijing 100084, Peoples R China
[2] Univ Durham, Inst Computat Cosmol, Dept Phys, South Rd, Durham DH1 3LE, England
[3] Univ Manchester, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, England
基金
中国博士后科学基金;
关键词
methods: data analysis; galaxies: kinematics and dynamics; TO-LIGHT RATIO; SDSS-IV MANGA; INTEGRAL-FIELD SPECTROSCOPY; STAR-FORMING GALAXIES; DARK-MATTER HALOES; ILLUSTRISTNG SIMULATIONS; HYDRODYNAMICAL SIMULATIONS; FUNDAMENTAL PLANE; ELLIPTIC GALAXIES; RADIAL VARIATIONS;
D O I
10.1093/mnras/stae406
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Conventional galaxy mass estimation methods suffer from model assumptions and degeneracies. Machine learning (ML), which reduces the reliance on such assumptions, can be used to determine how well present-day observations can yield predictions for the distributions of stellar and dark matter. In this work, we use a general sample of galaxies from the TNG100 simulation to investigate the ability of multibranch convolutional neural network (CNN) based ML methods to predict the central (i.e. within 1-2 effective radii) stellar and total masses, and the stellar mass-to-light ratio (M-*/L). These models take galaxy images and spatially resolved mean velocity and velocity dispersion maps as inputs. Such CNN-based models can, in general, break the degeneracy between baryonic and dark matter in the sense that the model can make reliable predictions on the individual contributions of each component. For example, with r-band images and two galaxy kinematic maps as inputs, our model predicting M-*/L has a prediction uncertainty of 0.04 dex. Moreover, to investigate which (global) features significantly contribute to the correct predictions of the properties above, we utilize a gradient-boosting machine. We find that galaxy luminosity dominates the prediction of all masses in the central regions, with stellar velocity dispersion coming next. We also investigate the main contributing features when predicting stellar and dark matter mass fractions (f(*), f(DM)) and the dark matter mass M-DM, and discuss the underlying astrophysics.
引用
收藏
页码:6354 / 6369
页数:16
相关论文
共 50 条
  • [21] Stellar mass and radius estimation using artificial intelligence
    Moya, A.
    Lopez-Sastre, R. J.
    ASTRONOMY & ASTROPHYSICS, 2022, 663
  • [22] No Significant Evolution of Relations between Black Hole Mass and Galaxy Total Stellar Mass Up to z ∼ 2.5
    Suh, Hyewon
    Civano, Francesca
    Trakhtenbrot, Benny
    Shankar, Francesco
    Hasinger, Guenther
    Sanders, David B.
    Allevato, Viola
    ASTROPHYSICAL JOURNAL, 2020, 889 (01):
  • [23] Galaxy And Mass Assembly (GAMA): the galaxy stellar mass function at z < 0.06
    Baldry, I. K.
    Driver, S. P.
    Loveday, J.
    Taylor, E. N.
    Kelvin, L. S.
    Liske, J.
    Norberg, P.
    Robotham, A. S. G.
    Brough, S.
    Hopkins, A. M.
    Bamford, S. P.
    Peacock, J. A.
    Bland-Hawthorn, J.
    Conselice, C. J.
    Croom, S. M.
    Jones, D. H.
    Parkinson, H. R.
    Popescu, C. C.
    Prescott, M.
    Sharp, R. G.
    Tuffs, R. J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2012, 421 (01) : 621 - 634
  • [24] PRECISE STELLAR POSITIONS USING GALAXY-MACHINE MEASURES OF A SCHMIDT PLATE
    DODD, RJ
    ASTRONOMICAL JOURNAL, 1972, 77 (04): : 306 - &
  • [25] Galaxy bimodality versus stellar mass and environment
    Baldry, I. K.
    Balogh, M. L.
    Bower, R. G.
    Glazebrook, K.
    Nichol, R. C.
    Bamford, S. P.
    Budavari, T.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2006, 373 (02) : 469 - 483
  • [26] Massive young stellar objects in the Local Group irregular galaxy NGC6822 identified using machine learning
    Kinson, David A.
    Oliveira, Joana M.
    van Loon, Jacco Th
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2021, 507 (04) : 5106 - 5131
  • [27] The dependence of star formation on galaxy stellar mass
    Zheng, Xian Zhong
    Bell, Eric F.
    Papovich, Casey
    Wolf, Christian
    Meisenheimer, Klaus
    Rix, Hans-Walter
    Rieke, George H.
    Somerville, Rachel
    ASTROPHYSICAL JOURNAL, 2007, 661 (01): : L41 - L44
  • [28] The stellar mass content of distant galaxy groups
    Balogh, Michael L.
    Wilman, Dave
    Henderson, Robert D. E.
    Bower, Richard G.
    Gilbank, David
    Whitaker, Richard
    Morris, Simon L.
    Hau, George
    Mulchaey, J. S.
    Oemler, A., Jr.
    Carlberg, R. G.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2007, 374 (03) : 1169 - 1180
  • [29] Characterizing simulated galaxy stellar mass histories
    Cohn, J. D.
    van de Voort, Freeke
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 446 (04) : 3253 - 3267
  • [30] Cosmology with galaxy cluster properties using machine learning
    Qiu, Lanlan
    Napolitano, Nicola R.
    Borgani, Stefano
    Zhong, Fucheng
    Li, Xiaodong
    Radovich, Mario
    Lin, Weipeng
    Dolag, Klaus
    Tortora, Crescenzo
    Wang, Yang
    Remus, Rhea-Silvia
    Wu, Sirui
    Longo, Giuseppe
    ASTRONOMY & ASTROPHYSICS, 2024, 687