A strong positivity property and a related inverse source problem for multi-term time-fractional diffusion equations

被引:0
|
作者
Hu, Li [1 ]
Li, Zhiyuan [1 ]
Yang, Xiaona [2 ]
机构
[1] Ningbo Univ, Sch Math & Stat, Ningbo 315211, Peoples R China
[2] Xiamen Univ, Sch Math Sci, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional diffusion equation; inverse source problem; nonlocal observation observation; uniqueness; Tikhonov regularization; COEFFICIENTS; DISPERSION; PRINCIPLE;
D O I
10.1007/s10473-024-0523-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we consider the diffusion equation with multi-term time-fractional derivatives. We first derive, by a subordination principle for the solution, that the solution is positive when the initial value is non-negative. As an application, we prove the uniqueness of solution to an inverse problem of determination of the temporally varying source term by integral type information in a subdomain. Finally, several numerical experiments are presented to show the accuracy and efficiency of the algorithm.
引用
收藏
页码:2019 / 2040
页数:22
相关论文
共 50 条
  • [1] A STRONG POSITIVITY PROPERTY AND A RELATED INVERSE SOURCE PROBLEM FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS
    胡利
    李志远
    杨晓娜
    Acta Mathematica Scientia, 2024, 44 (05) : 2019 - 2040
  • [2] Strong maximum principle for multi-term time-fractional diffusion equations and its application to an inverse source problem
    Liu, Yikan
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 73 (01) : 96 - 108
  • [3] Inverse source problem for multi-term time-fractional diffusion equation with nonlocal boundary conditions
    Derbissaly, Bauyrzhan
    Sadybekov, Makhmud
    AIMS MATHEMATICS, 2024, 9 (04): : 9969 - 9988
  • [4] Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem
    Sun, L. L.
    Chang, M. L.
    NETWORKS AND HETEROGENEOUS MEDIA, 2023, 18 (01) : 212 - 243
  • [5] Generic Well-posedness for an Inverse Source Problem for a Multi-term Time-fractional Diffusion Equation
    Li, Zhiyuan
    Cheng, Xing
    Liu, Yikan
    TAIWANESE JOURNAL OF MATHEMATICS, 2020, 24 (04): : 1005 - 1020
  • [6] STOCHASTIC MODEL FOR MULTI-TERM TIME-FRACTIONAL DIFFUSION EQUATIONS WITH NOISE
    Hosseini, Vahid Reza
    Remazani, Mohamad
    Zou, Wennan
    Banihashemi, Seddigheh
    THERMAL SCIENCE, 2021, 25 (SpecialIssue 2): : S287 - S293
  • [7] Weak unique continuation property and a related inverse source problem for time-fractional diffusion-advection equations
    Jiang, Daijun
    Li, Zhiyuan
    Liu, Yikan
    Yamamoto, Masahiro
    INVERSE PROBLEMS, 2017, 33 (05)
  • [8] Classical unique continuation property for multi-term time-fractional evolution equations
    Lin, Ching-Lung
    Nakamura, Gen
    MATHEMATISCHE ANNALEN, 2023, 385 (1-2) : 551 - 574
  • [9] Classical unique continuation property for multi-term time-fractional evolution equations
    Ching-Lung Lin
    Gen Nakamura
    Mathematische Annalen, 2023, 385 : 551 - 574
  • [10] An inverse space-dependent source problem for a multi-term time fractional diffusion equation
    Jiang, Suzhen
    Wu, Yujiang
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (12)