DeGCN: Deformable Graph Convolutional Networks for Skeleton-Based Action Recognition

被引:1
|
作者
Myung, Woomin [1 ]
Su, Nan [1 ]
Xue, Jing-Hao [2 ]
Wang, Guijin [1 ,3 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing 100084, Peoples R China
[2] UCL, Dept Stat Sci, London WC1E 6BT, England
[3] Shanghai Artificial Intelligence Lab, Shanghai 200232, Peoples R China
关键词
Skeleton-based action recognition; graph convolutional network; deformable convolution;
D O I
10.1109/TIP.2024.3378886
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Graph convolutional networks (GCN) have recently been studied to exploit the graph topology of the human body for skeleton-based action recognition. However, most of these methods unfortunately aggregate messages via an inflexible pattern for various action samples, lacking the awareness of intra-class variety and the suitableness for skeleton sequences, which often contain redundant or even detrimental connections. In this paper, we propose a novel Deformable Graph Convolutional Network (DeGCN) to adaptively capture the most informative joints. The proposed DeGCN learns the deformable sampling locations on both spatial and temporal graphs, enabling the model to perceive discriminative receptive fields. Notably, considering human action is inherently continuous, the corresponding temporal features are defined in a continuous latent space. Furthermore, we design an innovative multi-branch framework, which not only strikes a better trade-off between accuracy and model size, but also elevates the effect of ensemble between the joint and bone modalities remarkably. Extensive experiments show that our proposed method achieves state-of-the-art performances on three widely used datasets, NTU RGB+D, NTU RGB+D 120, and NW-UCLA.
引用
收藏
页码:2477 / 2490
页数:14
相关论文
共 50 条
  • [31] A lightweight graph convolutional network for skeleton-based action recognition
    Dinh-Tan Pham
    Quang-Tien Pham
    Tien-Thanh Nguyen
    Thi-Lan Le
    Hai Vu
    Multimedia Tools and Applications, 2023, 82 : 3055 - 3079
  • [32] A lightweight graph convolutional network for skeleton-based action recognition
    Pham, Dinh-Tan
    Pham, Quang-Tien
    Nguyen, Tien-Thanh
    Le, Thi-Lan
    Vu, Hai
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 82 (02) : 3055 - 3079
  • [33] Shuffle Graph Convolutional Network for Skeleton-Based Action Recognition
    Yu, Qiwei
    Dai, Yaping
    Hirota, Kaoru
    Shao, Shuai
    Dai, Wei
    JOURNAL OF ADVANCED COMPUTATIONAL INTELLIGENCE AND INTELLIGENT INFORMATICS, 2023, 27 (05) : 790 - 800
  • [34] GRAPH CONVOLUTIONAL LSTM MODEL FOR SKELETON-BASED ACTION RECOGNITION
    Zhang, Han
    Song, Yonghong
    Zhang, Yuanlin
    2019 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO (ICME), 2019, : 412 - 417
  • [35] Feedback Graph Convolutional Network for Skeleton-Based Action Recognition
    Yang, Hao
    Yan, Dan
    Zhang, Li
    Sun, Yunda
    Li, Dong
    Maybank, Stephen J.
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2022, 31 : 164 - 175
  • [36] Hierarchical Graph Convolutional Network for Skeleton-Based Action Recognition
    Huang, Linjiang
    Huang, Yan
    Ouyang, Wanli
    Wang, Liang
    IMAGE AND GRAPHICS, ICIG 2019, PT I, 2019, 11901 : 93 - 102
  • [37] Two-Stream Adaptive Graph Convolutional Networks for Skeleton-Based Action Recognition
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 12018 - 12027
  • [38] LIGHTWEIGHT CONNECTIVITY IN GRAPH CONVOLUTIONAL NETWORKS FOR SKELETON-BASED RECOGNITION
    Sahbi, Hichem
    2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 2329 - 2333
  • [39] Skeleton-Based Action Recognition With Multi-Stream Adaptive Graph Convolutional Networks
    Shi, Lei
    Zhang, Yifan
    Cheng, Jian
    Lu, Hanqing
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 9532 - 9545
  • [40] Integrating vertex and edge features with Graph Convolutional Networks for skeleton-based action recognition
    Liu, Kai
    Gao, Lei
    Khan, Naimul Mefraz
    Qi, Lin
    Guan, Ling
    NEUROCOMPUTING, 2021, 466 : 190 - 201