Interval Valued Neutrosophic Topological Spaces

被引:0
|
作者
Nanthini T. [1 ,2 ]
Pushpalatha A. [1 ,2 ]
机构
[1] Department of Mathematics, Government Arts College, Udumalpet, 642 126, Tamil Nadu
[2] Department of Mathematics, Government Arts College, Udumalpet, 642 126, Tamil Nadu
关键词
Interval valued neutrosophic subspace topology; Interval valued neutrosophic topology;
D O I
10.5281/zenodo.3723139
中图分类号
O144 [集合论]; O157 [组合数学(组合学)];
学科分类号
070104 ;
摘要
Within this paper, we present and research the definition of interval valued neutrosophic topological space along with interval valued neutrosophic finer and interval valued neutrosophic coarser topologies. We also describe interval valued neutrosophic interior and closer of an interval valued neutrosophic set. Interval valued neutrosophic subspace topology also studied. Some examples and theorems are presented concerning this concept. © 2020.
引用
收藏
页码:52 / 60
页数:8
相关论文
共 50 条
  • [21] Neutrosophic complex αψ connectedness in neutrosophic complex topological spaces
    Karthika M.
    Parimala M.
    Jafari S.
    Smarandache F.
    Alshumrani M.
    Ozel C.
    Udhayakumar R.
    [J]. Neutrosophic Sets and Systems, 2019, 29 : 158 - 164
  • [22] Neutrosophic αGS Closed Sets in Neutrosophic Topological Spaces
    Priya, V. Banu
    Chandrasekar, S.
    Suresh, M.
    Anbalagan, S.
    [J]. Neutrosophic Sets and Systems, 2022, 49 : 375 - 388
  • [23] Baire Spaces on Fuzzy Neutrosophic Topological Spaces
    Poongothai E.
    Padmavathi E.
    [J]. Neutrosophic Sets and Systems, 2022, 51 : 708 - 723
  • [24] On Single Valued Neutrosophic Regularity Spaces
    Saber, Yaser
    Alsharari, Fahad
    Smarandache, Florentin
    Abdel-Sattar, Mohammed
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2022, 130 (03): : 1625 - 1648
  • [25] Neutrosophic complex αψ connectedness in neutrosophic complex topological spaces
    Karthika, M.
    Parimala, M.
    Jafari, Saeid
    Smarandache, Florentin
    Alshumrani, Mohammed
    Ozel, Cenap
    Udhayakumar, R.
    [J]. NEUTROSOPHIC SETS AND SYSTEMS, 2019, 29 : 158 - 164
  • [26] Clustering Neutrosophic Data Sets and Neutrosophic Valued Metric Spaces
    Tas, Ferhat
    Topal, Selcuk
    Smarandache, Florentin
    [J]. SYMMETRY-BASEL, 2018, 10 (10):
  • [27] A Total Order on Single Valued and Interval Valued Neutrosophic Triplets
    Nayagam V.L.G.
    Bharanidharan R.
    [J]. Neutrosophic Sets and Systems, 2023, 55 : 383 - 402
  • [28] New operators on interval valued neutrosophic sets
    Saha, Abhijit
    Broumi, Said
    [J]. Neutrosophic Sets and Systems, 2019, 28 (2019) : 128 - 137
  • [29] Interval-Valued Neutrosophic Graph Structures
    Akram, Muhammad
    Sitara, Muzzamal
    [J]. PUNJAB UNIVERSITY JOURNAL OF MATHEMATICS, 2018, 50 (01): : 113 - 137
  • [30] Interval-valued neutrosophic hypothesis testing
    Haktanir, Elif
    [J]. JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (01) : 1107 - 1117