Semi-supervised domain adaptation on graphs with contrastive learning and minimax entropy

被引:0
|
作者
Xiao, Jiaren [1 ]
Dai, Quanyu [2 ]
Shen, Xiao [3 ]
Xie, Xiaochen [4 ,5 ]
Dai, Jing [1 ]
Lam, James [1 ]
Kwok, Ka-Wai [1 ]
机构
[1] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[2] Hong Kong Polytech Univ, Dept Comp, Hong Kong, Peoples R China
[3] Hainan Univ, Sch Comp Sci & Technol, Haikou, Peoples R China
[4] Harbin Inst Technol Shenzhen, Dept Automat, Shenzhen, Peoples R China
[5] Univ Duisburg Essen, Inst Automat Control & Complex Syst, Duisburg, Germany
基金
中国国家自然科学基金;
关键词
Semi-supervised domain adaptation; Graph transfer learning; Node classification; Graph contrastive learning; Adversarial learning;
D O I
10.1016/j.neucom.2024.127469
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Label scarcity in a graph is frequently encountered in real -world applications due to the high cost of data labeling. To this end, semi -supervised domain adaptation (SSDA) on graphs aims to leverage the knowledge of a labeled source graph to aid in node classification on a target graph with limited labels. SSDA tasks need to overcome the domain gap between the source and target graphs. However, to date, this challenging research problem has yet to be formally considered by the existing approaches designed for cross -graph node classification. This paper proposes a novel method called SemiGCL to tackle the graph Semi -supervised domain adaptation with Graph Contrastive Learning and minimax entropy training. SemiGCL generates informative node representations by contrasting the representations learned from a graph's local and global views. Additionally, SemiGCL is adversarially optimized with the entropy loss of unlabeled target nodes to reduce domain divergence. Experimental results on benchmark datasets demonstrate that SemiGCL outperforms the state-of-the-art baselines on the SSDA tasks.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Semi-supervised adversarial discriminative domain adaptation
    Nguyen, Thai-Vu
    Nguyen, Anh
    Le, Nghia
    Le, Bac
    APPLIED INTELLIGENCE, 2023, 53 (12) : 15909 - 15922
  • [32] Semi-supervised transfer subspace for domain adaptation
    Pereira, Luis A. M.
    Torres, Ricardo da Silva
    PATTERN RECOGNITION, 2018, 75 : 235 - 249
  • [33] Knowledge Distillation for Semi-supervised Domain Adaptation
    Orbes-Arteainst, Mauricio
    Cardoso, Jorge
    Sorensen, Lauge
    Igel, Christian
    Ourselin, Sebastien
    Modat, Marc
    Nielsen, Mads
    Pai, Akshay
    OR 2.0 CONTEXT-AWARE OPERATING THEATERS AND MACHINE LEARNING IN CLINICAL NEUROIMAGING, 2019, 11796 : 68 - 76
  • [34] Contrastive Credibility Propagation for Reliable Semi-supervised Learning
    Kutt, Brody
    Ramteke, Pralay
    Mignot, Xavier
    Toman, Pamela
    Ramanan, Nandini
    Chhetri, Sujit Rokka
    Huang, Shan
    Du, Min
    Hewlett, William
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 19, 2024, : 21294 - 21303
  • [35] Semi-supervised vanishing point detection with contrastive learning
    Wang, Yukun
    Gu, Shuo
    Liu, Yinbo
    Kong, Hui
    PATTERN RECOGNITION, 2024, 153
  • [36] CHGNN: A Semi-Supervised Contrastive Hypergraph Learning Network
    Song, Yumeng
    Gu, Yu
    Li, Tianyi
    Qi, Jianzhong
    Liu, Zhenghao
    Jensen, Christian S.
    Yu, Ge
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (09) : 4515 - 4530
  • [37] ASCL: Accelerating semi-supervised learning via contrastive learning
    Liu, Haixiong
    Li, Zuoyong
    Wu, Jiawei
    Zeng, Kun
    Hu, Rong
    Zeng, Wei
    Concurrency and Computation: Practice and Experience, 2024, 36 (28)
  • [38] Class-Aware Contrastive Semi-Supervised Learning
    Yang, Fan
    Wu, Kai
    Zhang, Shuyi
    Jiang, Guannan
    Liu, Yong
    Zheng, Feng
    Zhang, Wei
    Wang, Chengjie
    Zeng, Long
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 14401 - 14410
  • [39] Contrastive Semi-Supervised Learning for Image Highlight Removal
    Li, Pengyue
    Li, Xiaolan
    Li, Wentao
    Xu, Xinying
    IEEE SIGNAL PROCESSING LETTERS, 2024, 31 : 1334 - 1338
  • [40] CoMatch: Semi-supervised Learning with Contrastive Graph Regularization
    Li, Junnan
    Xiong, Caiming
    Hoi, Steven C. H.
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 9455 - 9464