Addressing Limitations of State-Aware Imitation Learning for Autonomous Driving

被引:0
|
作者
Cultrera, Luca [1 ]
Becattini, Federico [2 ]
Seidenari, Lorenzo [1 ]
Pala, Pietro [1 ]
Del Bimbo, Alberto [1 ]
机构
[1] Univ Florence, I-50121 Florence, Italy
[2] Univ Siena, I-53100 Siena, Italy
来源
基金
欧盟地平线“2020”;
关键词
Training; Transformers; Correlation; Data models; Data augmentation; Autonomous vehicles; Task analysis; Autonomous driving; imitation learning; inertia problem;
D O I
10.1109/TIV.2023.3336063
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Conditional Imitation learning is a common and effective approach to train autonomous driving agents. However, two issues limit the full potential of this approach: (i) the inertia problem, a special case of causal confusion where the agent mistakenly correlates low speed with no acceleration, and (ii) low correlation between offline and online performance due to the accumulation of small errors that brings the agent in a previously unseen state. Both issues are critical for state-aware models, yet informing the driving agent of its internal state as well as the state of the environment is of crucial importance. In this article we propose a multi-task learning agent based on a multi-stage vision transformer with state token propagation. We feed the state of the vehicle along with the representation of the environment as a special token of the transformer and propagate it throughout the network. This allows us to tackle the aforementioned issues from different angles: guiding the driving policy with learned stop/go information, performing data augmentation directly on the state of the vehicle and visually explaining the model's decisions. We report a drastic decrease in inertia and a high correlation between offline and online metrics.
引用
收藏
页码:2946 / 2955
页数:10
相关论文
共 50 条
  • [31] Framework for State-Aware Virtual Hardware Fuzzing
    Xu, Hang
    Qin, Ganyu
    Zhu, Junhu
    Liu, Zimian
    Liu, Zhiqiang
    WIRELESS COMMUNICATIONS & MOBILE COMPUTING, 2021, 2021
  • [32] Learning an Uncertainty-Aware Object Detector for Autonomous Driving
    Meyer, Gregory P.
    Thakurdesai, Niranjan
    2020 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2020, : 10521 - 10527
  • [33] An enhanced state-aware model learning approach for security analysis in lightweight protocol implementations
    Jiaxing Guo
    Dongliang Zhao
    Chunxiang Gu
    Xi Chen
    Xieli Zhang
    Mengcheng Ju
    Journal of Cloud Computing, 13
  • [34] Application of a brain-inspired deep imitation learning algorithm in autonomous driving
    Ahmedov, Hasan Bayarov
    Yi, Dewei
    Sui, Jie
    SOFTWARE IMPACTS, 2021, 10
  • [35] Deep Imitation Learning for Autonomous Driving in Generic Urban Scenarios with Enhanced Safety
    Chen, Jianyu
    Yuan, Bodi
    Tomizuka, Masayoshi
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 2884 - 2890
  • [36] Semi-Supervised Imitation Learning with Mixed Qualities of Demonstrations for Autonomous Driving
    Lee, Gunmin
    Oh, Wooseok
    Oh, Jeongwoo
    Shin, Seungyoun
    Kim, Dohyeong
    Jeong, Jaeyeon
    Choi, Sungjoon
    Oh, Songhwai
    2022 22ND INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2022), 2022, : 20 - 25
  • [37] A FAST INTEGRATED PLANNING AND CONTROL FRAMEWORK FOR AUTONOMOUS DRIVING VIA IMITATION LEARNING
    Sun, Liting
    Peng, Cheng
    Zhan, Wei
    Tomizuka, Masayoshi
    PROCEEDINGS OF THE ASME 11TH ANNUAL DYNAMIC SYSTEMS AND CONTROL CONFERENCE, 2018, VOL 3, 2018,
  • [38] Autonomous Driving Based on Modified SAC Algorithm through Imitation Learning Pretraining
    Gao, Mengyi
    Chang, Dong Eui
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1360 - 1364
  • [39] Agile Autonomous Driving using End-to-End Deep Imitation Learning
    Pan, Yunpeng
    Cheng, Ching-An
    Saigol, Kamil
    Lee, Keuntaek
    Yan, Xinyan
    Theodorou, Evangelos A.
    Boots, Byron
    ROBOTICS: SCIENCE AND SYSTEMS XIV, 2018,
  • [40] DeFIX: Detecting and Fixing Failure Scenarios with Reinforcement Learning in Imitation Learning Based Autonomous Driving
    Dagdanov, Resul
    Eksen, Feyza
    Durmus, Halil
    Yurdakul, Ferhat
    Ure, Nazim Kemal
    2022 IEEE 25TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2022, : 4215 - 4220