Kinetic model-informed deep learning for multiplexed PET image separation

被引:0
|
作者
Pan, Bolin [1 ]
Marsden, Paul K. [1 ]
Reader, Andrew J. [1 ]
机构
[1] Kings Coll London, Sch Biomed Engn & Imaging Sci, London, England
来源
EJNMMI PHYSICS | 2024年 / 11卷 / 01期
基金
英国工程与自然科学研究理事会;
关键词
Multiplexed PET; Kinetic modeling; Spectral analysis; Physics-informed deep learning; INPUT FUNCTION; DYNAMIC PET; TRACER; F-18-FDG; BRAIN; QUANTIFICATION; RECONSTRUCTION; INJECTION; SCAN;
D O I
10.1186/s40658-024-00660-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
BackgroundMultiplexed positron emission tomography (mPET) imaging can measure physiological and pathological information from different tracers simultaneously in a single scan. Separation of the multiplexed PET signals within a single PET scan is challenging due to the fact that each tracer gives rise to indistinguishable 511 keV photon pairs, and thus no unique energy information for differentiating the source of each photon pair.MethodsRecently, many applications of deep learning for mPET image separation have been concentrated on pure data-driven methods, e.g., training a neural network to separate mPET images into single-tracer dynamic/static images. These methods use over-parameterized networks with only a very weak inductive prior. In this work, we improve the inductive prior of the deep network by incorporating a general kinetic model based on spectral analysis. The model is incorporated, along with deep networks, into an unrolled image-space version of an iterative fully 4D PET reconstruction algorithm.ResultsThe performance of the proposed method was evaluated on a simulated brain image dataset for dual-tracer [18\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{18}$$\end{document}F]FDG+[11\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$<^>{11}$$\end{document}C]MET PET image separation. The results demonstrate that the proposed method can achieve separation performance comparable to that obtained with single-tracer imaging. In addition, the proposed method outperformed the model-based separation methods (the conventional voxel-wise multi-tracer compartment modeling method (v-MTCM) and the image-space dual-tracer version of the fully 4D PET image reconstruction algorithm (IS-F4D)), as well as a pure data-driven separation [using a convolutional encoder-decoder (CED)], with fewer training examples.ConclusionsThis work proposes a kinetic model-informed unrolled deep learning method for mPET image separation. In simulation studies, the method proved able to outperform both the conventional v-MTCM method and a pure data-driven CED with less training data.
引用
收藏
页数:24
相关论文
共 50 条
  • [21] Continuous Learning in Model-Informed Precision Dosing: A Case Study in Pediatric Dosing of Vancomycin
    Hughes, Jasmine H.
    Tong, Dominic M. H.
    Lucas, Sarah Scarpace
    Faldasz, Jonathan D.
    Goswami, Srijib
    Keizer, Ron J.
    [J]. CLINICAL PHARMACOLOGY & THERAPEUTICS, 2021, 109 (01) : 233 - 242
  • [22] Uncertainty-Informed Bayesian PET Image Reconstruction Using a Deep Image Prior
    Sudarshan, Viswanath P.
    Reddy, K. Pavan Kumar
    Singh, Mohana
    Gubbi, Jayavardhana
    Pal, Arpan
    [J]. MACHINE LEARNING FOR MEDICAL IMAGE RECONSTRUCTION (MLMIR 2022), 2022, 13587 : 145 - 155
  • [23] Model-informed machine learning for multi-component T-2 relaxometry
    Yu, Thomas
    Jorge Canales-Rodriguez, Erick
    Pizzolato, Marco
    Piredda, Gian Franco
    Hilbert, Tom
    Fischi-Gomez, Elda
    Weigel, Matthias
    Barakovic, Muhamed
    Cuadra, Meritxell Bach
    Granziera, Cristina
    Kober, Tobias
    Thiran, Jean-Philippe
    [J]. MEDICAL IMAGE ANALYSIS, 2021, 69
  • [24] PET image reconstruction with deep progressive learning
    Lv, Yang
    Xi, Chen
    [J]. PHYSICS IN MEDICINE AND BIOLOGY, 2021, 66 (10):
  • [25] A continued learning approach for model-informed precision dosing: Updating models in clinical practice
    Maier, Corinna
    Wiljes, Jana
    Hartung, Niklas
    Kloft, Charlotte
    Huisinga, Wilhelm
    [J]. CPT-PHARMACOMETRICS & SYSTEMS PHARMACOLOGY, 2022, 11 (02): : 185 - 198
  • [26] Efficient model-informed co-segmentation of tumors on PET/CT driven by clustering and classification information
    Li, Laquan
    Jiang, Chuangbo
    Yu, Lei
    Zeng, Xianhua
    Zheng, Shenhai
    [J]. Computers in Biology and Medicine, 2024, 180
  • [27] Neuromusculoskeletal model-informed machine learning-based control of a knee exoskeleton with uncertainties quantification
    Zhang, Longbin
    Zhang, Xiaochen
    Zhu, Xueyu
    Wang, Ruoli
    Gutierrez-Farewik, Elena M.
    [J]. FRONTIERS IN NEUROSCIENCE, 2023, 17
  • [28] Haemoglobin response modelling under erythropoietin treatment: Physiological model-informed machine learning method
    Zhang, Zhongyu
    Li, Zukui
    [J]. CANADIAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 101 (08): : 4307 - 4319
  • [29] Model-informed drug repurposing: Viral kinetic modelling to prioritize rational drug combinations for COVID-19
    Dodds, Michael G.
    Krishna, Rajesh
    Goncalves, Antonio
    Rayner, Craig R.
    [J]. BRITISH JOURNAL OF CLINICAL PHARMACOLOGY, 2021, 87 (09) : 3439 - 3450
  • [30] Combining deep learning with a kinetic model to predict dynamic PET images and generate parametric images
    Liang, Ganglin
    Zhou, Jinpeng
    Chen, Zixiang
    Wan, Liwen
    Wumener, Xieraili
    Zhang, Yarong
    Liang, Dong
    Liang, Ying
    Hu, Zhanli
    [J]. EJNMMI PHYSICS, 2023, 10 (01)