Improved Model for Identifying the Cyberbullying Based on Tweets of Twitter

被引:0
|
作者
Samalo D. [1 ]
Martin R. [1 ]
Utama D.N. [1 ]
机构
[1] Computer Science Department, BINUS Graduate Program – Master of Computer Science, Bina Nusantara University, Jakarta
来源
Informatica (Slovenia) | 2023年 / 47卷 / 06期
关键词
cyberbullying; decision tree; natural language processing; text mining; Twitter;
D O I
10.31449/inf.v47i6.4534
中图分类号
学科分类号
摘要
The surge of cyberbullying on social media platforms is a major concern in today's digital age, with its prevalence escalating alongside advancements in technology. Thus, devising methods to detect and eliminate cyberbullying has become a crucial task. This research meticulously presents a refined model for identifying instances of cyberbullying, building on previous methodologies. The process of devising the model involved a thorough literature review, object-oriented design, and decision tree methodologies to shape the labelling procedure and build the classifier. Data pre-processing was executed using RapidMiner, considering six intrinsic components. The final model successfully classified Indonesian-language tweets into five distinct categories: animal, psychology and stupidity, disabled person, attitude, and general bullying, with an accuracy rate of 99.56%. © 2023 Slovene Society Informatika. All rights reserved.
引用
收藏
页码:159 / 164
页数:5
相关论文
共 50 条
  • [31] Identifying Health-Related Discussions of Cannabis Use on Twitter by Using a Medical Dictionary: Content Analysis of Tweets
    Allem, Jon-Patrick
    Majmundar, Anuja
    Dormanesh, Allison
    Donaldson, Scott, I
    JMIR FORMATIVE RESEARCH, 2022, 6 (02)
  • [32] Holy Tweets: Exploring the Sharing of Quran on Twitter
    Abokhodair N.
    Elmadany A.
    Magdy W.
    Proceedings of the ACM on Human-Computer Interaction, 2020, 4 (CSCW2)
  • [33] Analysing Twitter Data for Phishing Tweets Identification
    Al-Akashi, Falah Hassan Ali
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2021, 17 (02) : 96 - 106
  • [34] Cyberbullying Detection in Twitter Using Sentiment Analysis
    Theng, Chong Poh
    Othman, Nur Fadzilah
    Abdullah, Raihana Syahirah
    Anawar, Syarulnaziah
    Ayop, Zakiah
    Ramli, Sofia Najwa
    INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2021, 21 (11): : 1 - 10
  • [35] #Wikipedia on Twitter: Analyzing Tweets about Wikipedia
    Zangerle, Eva
    Schmidhammer, Georg
    Specht, Guenther
    PROCEEDINGS OF THE 11TH INTERNATIONAL SYMPOSIUM ON OPEN COLLABORATION, 2015, : D3 - +
  • [36] Using Tweets Embeddings For Hashtag Recommendation in Twitter
    Ben-Lhachemi, Nada
    Nfaoui, El Habib
    PROCEEDINGS OF THE FIRST INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING IN DATA SCIENCES (ICDS2017), 2018, 127 : 7 - 15
  • [37] A QUALITATIVE ANALYSIS OF TWEETS BY THE "DISINFORMATION DOZEN" ON TWITTER
    Bannor, Richard
    Idiong, Christie I.
    Pagoto, Sherry L.
    ANNALS OF BEHAVIORAL MEDICINE, 2022, 56 (SUPP 1) : S479 - S479
  • [38] TWEETS SPEAK: INDEFINITE DISCIPLINE IN THE AGE OF TWITTER
    May, Steven James
    MEDIA TROPES, 2013, 4 (01) : 112 - 122
  • [39] Identifying emotions in earthquake tweets
    Anthony, Patricia
    Wong, Jennifer Hoi Ki
    Joyce, Zita
    AI & SOCIETY, 2024,
  • [40] Sweet tweets! Evaluating a new approach for probability-based sampling of Twitter
    Buskirk, Trent D.
    Blakely, Brian P.
    Eck, Adam
    McGrath, Richard
    Singh, Ravinder
    Yu, Youzhi
    EPJ DATA SCIENCE, 2022, 11 (01)