Temporal Multimodal Multivariate Learning

被引:2
|
作者
Park, Hyoshin [1 ]
Darko, Justice [1 ]
Deshpande, Niharika
Pandey, Venktesh [2 ]
Su, Hui [3 ]
Ono, Masahiro [4 ]
Barkely, Dedrick [1 ]
Folsom, Larkin [1 ]
Posselt, Derek [5 ]
Chien, Steve [6 ]
机构
[1] North Carolina A&T State Univ, Dept Comput Data Sci & Engn, Greensboro, NC 27405 USA
[2] North Carolina A&T State Univ, Dept Civil Archi & Envir Eng, Greensboro, NC USA
[3] CALTECH, Stratosphere & Upper Troposphere Jet Prop Lab, Pasadena, CA USA
[4] CALTECH, Jet Prop Lab, Robot, Pasadena, CA USA
[5] CALTECH, Jet Prop Lab, Atmospher Phys & Weather, Pasadena, CA USA
[6] CALTECH, Artificial Intelligence, Jet Prop Lab, Pasadena, CA USA
基金
美国国家航空航天局;
关键词
Multimodal Entropy; Multivariate Learning; Spatiotemporal Information; Sequential decision; REAL-TIME PREDICTION; EQUILIBRIUM; EXPLORATION;
D O I
10.1145/3534678.3539159
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We introduce temporal multimodal multivariate learning, a new family of decision making models that can indirectly learn and transfer online information from simultaneous observations of a probability distribution with more than one peak or more than one outcome variable from one time stage to another. We approximate the posterior by sequentially removing additional uncertainties across different variables and time, based on data-physics driven correlation, to address a broader class of challenging time-dependent decision-making problems under uncertainty. Extensive experiments on real-world datasets ( i.e., urban traffic data and hurricane ensemble forecasting data) demonstrate the superior performance of the proposed targeted decision-making over the state-of-the-art baseline prediction methods across various settings.
引用
收藏
页码:3722 / 3732
页数:11
相关论文
共 50 条
  • [1] A Deep Learning Architecture for Temporal Sleep Stage Classification Using Multivariate and Multimodal Time Series
    Chambon, Stanislas
    Galtier, Mathieu N.
    Arnal, Pierrick J.
    Wainrib, Gilles
    Gramfort, Alexandre
    IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2018, 26 (04) : 758 - 769
  • [2] Multivariate temporal dictionary learning for EEG
    Barthelemy, Q.
    Gouy-Pailler, C.
    Isaac, Y.
    Souloumiac, A.
    Larue, A.
    Mars, J. I.
    JOURNAL OF NEUROSCIENCE METHODS, 2013, 215 (01) : 19 - 28
  • [3] Temporal Multimodal Learning in Audiovisual Speech Recognition
    Hu, Di
    Li, Xuelong
    Lu, Xiaoqiang
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 3574 - 3582
  • [4] Spatio-Temporal Multimodal Developmental Learning
    Zhang, Yilu
    Weng, Juyang
    IEEE TRANSACTIONS ON AUTONOMOUS MENTAL DEVELOPMENT, 2010, 2 (03) : 149 - 166
  • [5] Deep Multimodal Representation Learning from Temporal Data
    Yang, Xitong
    Ramesh, Palghat
    Chitta, Radha
    Madhvanath, Sriganesh
    Bernal, Edgar A.
    Luo, Jiebo
    30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, : 5066 - 5074
  • [6] Multimodal learning for temporal relation extraction in clinical texts
    Knez, Timotej
    Zitnik, Slavko
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2024, 31 (06) : 1380 - 1387
  • [7] Probabilistic Learning of Multivariate Time Series With Temporal Irregularity
    Li, Yijun
    Leung, Cheuk Hang
    Wu, Qi
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (05) : 2874 - 2887
  • [8] Multivariate Machine Learning Methods for Fusing Multimodal Functional Neuroimaging Data
    Daehne, Sven
    Biessmann, Felix
    Samek, Wojciech
    Haufe, Stefan
    Goltz, Dominique
    Gundlach, Christopher
    Villringer, Arno
    Fazli, Siamac
    Muller, Klaus-Robert
    PROCEEDINGS OF THE IEEE, 2015, 103 (09) : 1507 - 1530
  • [9] Dissecting the Temporal Dynamics of Embodied Collaborative Learning Using Multimodal Learning Analytics
    Yan, Lixiang
    Martinez-Maldonado, Roberto
    Swiecki, Zachari
    Zhao, Linxuan
    Li, Xinyu
    Gasevic, Dragan
    JOURNAL OF EDUCATIONAL PSYCHOLOGY, 2025, 117 (01) : 106 - 133
  • [10] Unbiased estimation based multivariate alarm design considering temporal and multimodal process characteristics
    Tian, Chang
    Zhao, Chunhui
    CONTROL ENGINEERING PRACTICE, 2023, 136