Effect of Deep Fertilization with Slow/Controlled Release Fertilizer on N Fate in Clayey Soil Wheat Field

被引:0
|
作者
Hou P.-F. [1 ,2 ]
Xue L.-X. [1 ]
Yuan W.-S. [3 ]
Cao S. [1 ,2 ]
Liu Y.-D. [1 ]
Xue L.-H. [1 ,2 ]
Yang L.-Z. [1 ,2 ]
机构
[1] Key Laboratory of Agro-Environment in Downstream of Yangtze Plain of Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agricultural Sciences, Nanjing
[2] College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing
[3] Nanjing Institute of Agricultural Mechanization, Ministry of Agriculture and Rural Affairs, Nanjing
来源
Huanjing Kexue/Environmental Science | 2023年 / 44卷 / 01期
关键词
clayey soil; deep fertilization; nitrogen loss; slow/controlled release fertilizer; soil inorganic nitrogen; wheat;
D O I
10.13227/j.hjkx.202203255
中图分类号
学科分类号
摘要
Clayey soil seriously affects water-holding capacity and nutrient movement. Adopting appropriate agronomic measures to optimize the distribution of soil inorganic nitrogen (SIN) and reduce the nitrogen (N) loss in this soil is the key to agricultural sustainable development. To clarify the effect of deep fertilization of slow/ controlled release fertilizer with sowing on N loss in a clayey soil wheat field, two types of fertilizers, conventional fertilizer (CN) and slow/ controlled release fertilizer (RCU), were selected in this study. Here, we evaluated the effects of these two fertilizer types on wheat yield, seasonal N runoff loss, ammonia volatilization, and N2O emissions in wheat fields in two typical fertilization modes (manual surface sowing and spreading (B) and belowground fertilization of slow/ controlled release urea with mechanized strip sowing (D)). The temporal and spatial distribution characteristics of SIN in topsoil were also analyzed. The results showed that under the same fertilizer type, the wheat yield of D treatment was significantly higher than that of B treatment, whereas the yield of RCU was notably higher than that of CN under the same fertilization mode. D-RCU achieved the highest yield of 6. 97 t.hm - 2 . The seasonal N losses from runoff and ammonia volatilization were higher than that from N2O emissions, and the responses of different N loss pathways to fertilizer types and fertilization methods were diverse. Fertilizer type and runoff occurrence time were the main influencing factors of N runoff loss, and N runoff loss of the RCU treatment was higher in the non-fertilization period. Unfortunately, affected by annual rainfall pattern, the seasonal N runoff loss of the RCU treatment (20. 35 kg.hm - 2 ) was significantly higher than that of the CN treatment (10. 49 kg.hm - 2 ). The late growth period was the main phase of ammonia volatilization, and the later period was jointly affected by fertilization modes and fertilizer types. The B-CN treatment induced the highest seasonal ammonia volatilization (18. 15 kg.hm - 2 ), which was significantly higher than that of the other treatments (7. 31-8. 38 kg.hm - 2 ). Additionally, the D-RCU treatment (2. 41 kg.hm - 2 ) tended to reduce the N2O emissions in comparison to that in the B-CN treatment (4. 02 kg.hm - 2 ). The results also indicated that the horizontal movement of SIN was higher than the vertical movement. Deep fertilization of RCU was conducive to optimizing the spatial and temporal distribution of SIN, which was the main reason for the increase in wheat yield and the control of N loss from wheat fields. These results suggest that RCU is a suitable alternative fertilizer for increasing yield and reducing N loss in clayey soil wheat fields; D-RCU can increase the wheat yield and reduce ammonia volatilization and N2O emissions in wheat fields by optimizing the spatial and temporal distribution of SIN, and its increasing effect on N runoff loss in the non-fertilization period deserves attention. © 2023 Science Press. All rights reserved.
引用
收藏
页码:473 / 481
页数:8
相关论文
共 44 条
  • [1] (2021)
  • [2] 3, (2020)
  • [3] Yu C Q., The coupled effects of water and nitrogen on China's food and environmental securities, Scientia Sinica Terrae, 49, 12, pp. 2018-2036, (2019)
  • [4] Ju X T, Zhang C., The principles and indicators of rational N fertilization, Acta Pedologica Sinica, 58, 1, pp. 1-13, (2021)
  • [5] 5, pp. 16-18, (2018)
  • [6] Zhang C, Ju X T, Powlson D, Et al., Nitrogen surplus benchmarks for controlling N pollution in the main cropping systems of China [ J], Environmental Science & Technology, 53, 12, pp. 6678-6687, (2019)
  • [7] Yan X Y, Xia L L, Ti C., Temporal and spatial variations in nitrogen use efficiency of crop production in China [ J ], Environmental Pollution, 293, (2022)
  • [8] Liu Z H, Wu X B, Tan D S, Et al., Application and environmental effects of one-off fertilization technique in major cereal crops in China, Scientia Agricultura Sinica, 51, 20, pp. 3827-3839, (2018)
  • [9] Tang H, Wang J W, Xu C S, Et al., Research progress analysis on key technology of chemical fertilizer reduction and efficiency increase, Transactions of the Chinese Society for Agricultural Machinery, 50, 4, pp. 1-19, (2019)
  • [10] Fu J J, Wang C Y, Chen X X, Et al., Classification research and types of slow controlled release fertilizers (SRFs) used - a review, Communications in Soil Science and Plant Analysis, 49, 17, pp. 2219-2230, (2018)