Co-delivery of epirubicin and letrozole using a metal-organic framework nanoparticle in breast cancer therapy

被引:5
|
作者
Hashemi, Atieh [1 ]
Hayat-Gheibi, Seyed Reza [2 ]
Baghbani-Arani, Fahimeh [2 ]
机构
[1] Shahid Beheshti Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Tehran, Iran
[2] Islamic Azad Univ, Sch Biol Sci, Dept Genet & Biotechnol, Varamin Pishva Branch, POB 3381774895, Varamin, Iran
关键词
Letrozole; Epirubicin; Metal-organic framework; Co-delivery; UIO-66@NH 2; Breast cancer; CONTROLLED-RELEASE; DRUG-DELIVERY; UIO-66; COMBINATION; RESISTANCE; ADSORPTION; JOURNEY;
D O I
10.1016/j.jddst.2024.105515
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Combination chemotherapy is a viable approach for cancer treatment in clinics when dealing with multidrugresistant cancer. The difficulty of concentrating medications in drug-resistant cancers remains a substantial issue, making it challenging to get sufficient multi-drug delivery into tumour cells to enhance the synergetic therapeutic effect. To enhance combination therapy, we fabricated metal-organic framework (MOF) nanoparticles (NPs) that co-deliver letrozole (Let) and epirubicin (Epi). We created UIO-66@NH2-based MOFs to achieve desired encapsulation efficiencies of 82.93 +/- 2.13 for Let and 66.84 +/- 1.25 for Epi. The drug release profile revealed that the release rate of Let and Epi from the nanoparticles was pH-dependent, with a significant increase in acidic environments. This indicated the adaptive release capability of UIO-66-Let/Epi@NH2 in the breast cancer milieu. The nanoparticle size and entrapment efficiency were more stable at 4 degrees C as compared to 25 degrees C. Additionally, cellular assays demonstrated that a MOF loaded with Let and Epi increased the rate of apoptosis in MCF-7 cells compared to Let, Epi, and their combination (Let + Epi). The UIO-66-Let/Epi@NH2 group showed increased expression levels of Caspase3, Caspase9, and Mfn1 genes while the expression levels of MMP-3 and MMP-9 genes decreased. The effectiveness of the formulation in inducing apoptosis was confirmed by the results of DAPI staining microscopy and flow cytometry analysis. The higher apoptotic rate and toxicity of the Let/Epi-loaded UIO-66@NH2 MOF may be due to its greater delivery effectiveness into cancer cells. This article describes a novel MOF nanocarrier for the co-delivery of Let and Epi to treat breast cancer. The results demonstrate the potential of MOF nanocarriers as stimuli-responsive co-delivery systems for various drugs.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Multifunctional metal-organic framework heterostructures for enhanced cancer therapy
    Liu, Jintong
    Huang, Jing
    Zhang, Lei
    Lei, Jianping
    CHEMICAL SOCIETY REVIEWS, 2021, 50 (02) : 1188 - 1218
  • [22] Co-delivery of doxorubicin and curcumin to breast cancer cells by a targeted delivery system based on Ni/Ta core-shell metal-organic framework coated with folic acid-activated chitosan nanoparticles
    Samaneh-sadat Jalaladdiny
    Arastoo Badoei-dalfard
    Zahra Karami
    Ghasem Sargazi
    Journal of the Iranian Chemical Society, 2022, 19 : 4287 - 4298
  • [23] A simple and powerful co-delivery system based on pH-responsive metal-organic frameworks for enhanced cancer immunotherapy
    Duan, Fei
    Feng, Xiaochen
    Yang, Xinjian
    Sun, Wentong
    Jin, Yi
    Liu, Huifang
    Ge, Kun
    Li, Zhenhua
    Zhang, Jinchao
    BIOMATERIALS, 2017, 122 : 23 - 33
  • [24] Co-delivery of doxorubicin and curcumin to breast cancer cells by a targeted delivery system based on Ni/Ta core-shell metal-organic framework coated with folic acid-activated chitosan nanoparticles
    Jalaladdiny, Samaneh-sadat
    Badoei-dalfard, Arastoo
    Karami, Zahra
    Sargazi, Ghasem
    JOURNAL OF THE IRANIAN CHEMICAL SOCIETY, 2022, 19 (10) : 4287 - 4298
  • [25] Co-delivery systems of paclitaxel prodrug for targeted synergistic therapy of breast cancer
    Yin, Wang
    Tian, Liu
    Wang, Shenchun
    Zhang, Dezhen
    Guo, Shengrong
    Lang, Meidong
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2022, 69
  • [26] Direct cytosolic co-delivery of siRNA and tamoxifen for enhanced breast cancer therapy
    Hardie, Joseph
    Jiang, Ying
    Tetrault, Emily
    Ghazi, Phaedra
    Tonga, Gulen Yesilbag
    Farkas, Michelle
    Rotello, Vincent
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [27] Metal-organic Framework in Pharmaceutical Drug Delivery
    Kundu, Sudipto
    Swaroop, Akey Krishna
    Selvaraj, Jubie
    CURRENT TOPICS IN MEDICINAL CHEMISTRY, 2023, 23 (13) : 1155 - 1170
  • [28] Cytotoxicity of a metal-organic framework: Drug delivery
    Ma, Aiqing
    Luo, Zhidong
    Gu, Chuying
    Li, Baohong
    Liu, Jianqiang
    INORGANIC CHEMISTRY COMMUNICATIONS, 2017, 77 : 68 - 71
  • [29] Conversion of CO to ethanol by using a metal-organic framework catalyst
    Jing-Lin Zuo
    Science China(Chemistry) , 2019, (10) : 1263 - 1264
  • [30] Co-delivery of lapatinib and 5-fluorouracil transfersomes using transpapillary iontophoresis for breast cancer therapy
    Fernandes, Neha B.
    Velagacherla, Varalakshmi
    Bhagya, N.
    Mehta, Chetan H.
    Gadag, Shivaprasad
    Sabhahit, Jayalakshmi N.
    Nayak, Usha Y.
    Spandana, K. J.
    INTERNATIONAL JOURNAL OF PHARMACEUTICS, 2024, 650