Friend Recommendations with Self-Rescaling Graph Neural Networks

被引:12
|
作者
Song, Xiran [1 ]
Lian, Jianxun [2 ]
Huang, Hong [1 ]
Wu, Mingqi [3 ]
Jin, Hai [1 ]
Xie, Xing [2 ]
机构
[1] Huazhong Univ Sci & Technol, Natl Engn Res Ctr Big Data Technol & Syst, Serv Comp Technol & Syst Lab, Wuhan, Peoples R China
[2] Microsoft Res Asia, Beijing, Peoples R China
[3] Microsoft Gaming, Redmond, WA USA
基金
中国国家自然科学基金;
关键词
Friend recommendation; graph neural networks; normalization;
D O I
10.1145/3534678.3539192
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Friend recommendation service plays an important role in shaping and facilitating the growth of online social networks. Graph embedding models, which can learn low-dimensional embeddings for nodes in the social graph to effectively represent the proximity between nodes, have been widely adopted for friend recommendations. Recently, Graph Neural Networks (GNNs) have demonstrated superiority over shallow graph embedding methods, thanks to their ability to explicitly encode neighborhood context. This is also verified in our Xbox friend recommendation scenario, where some simplified GNNs, such as LightGCN and PPRGo, achieve the best performance. However, we observe that many GNN variants, including LightGCN and PPRGo, use a static and pre-defined normalizer in neighborhood aggregation, which is decoupled with the representation learning process and can cause the scale distortion issue. As a consequence, the true power of GNNs has not yet been fully demonstrated in friend recommendations. In this paper, we propose a simple but effective self-rescaling network (SSNet) to alleviate the scale distortion issue. At the core of SSNet is a generalized self-rescaling mechanism, which bridges the neighborhood aggregator's normalization with the node embedding learning process in an end-to-end framework. Meanwhile, we provide some theoretical analysis to help us understand the benefit of SSNet. We conduct extensive offline experiments on three large-scale real-world datasets. Results demonstrate that our proposed method can significantly improve the accuracy of various GNNs. When deployed online for one month's A/B test, our method achieves 24% uplift in adding suggested friends actions. At last, we share some interesting findings and hope the experience can motivate future applications and research in social link predictions.
引用
收藏
页码:3909 / 3919
页数:11
相关论文
共 50 条
  • [31] Self-pro: A Self-prompt and Tuning Framework for Graph Neural Networks
    Gong, Chenghua
    Li, Xiang
    Yu, Jianxiang
    Cheng, Yao
    Tan, Jiaqi
    Yu, Chengcheng
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES: RESEARCH TRACK, PT II, ECML PKDD 2024, 2024, 14942 : 197 - 215
  • [32] Self-supervised graph neural networks for polymer property prediction
    Gao, Qinghe
    Dukker, Tammo
    Schweidtmann, Artur M.
    Weber, Jana M.
    MOLECULAR SYSTEMS DESIGN & ENGINEERING, 2024, 9 (11): : 1130 - 1143
  • [33] Self-Constrained Graph Stochastic Neural Networks for Graphstructure Learning
    Key Lab of Intelligent Perception and Image Understanding of Ministry of Education, International Center of Intelligent Perception and Computation, Xidian University, Xi’an
    710071, China
  • [34] Self-training on graph neural networks for recommendation with implicit feedback
    Qiu, Lin
    Zou, Qi
    KNOWLEDGE-BASED SYSTEMS, 2023, 276
  • [35] Self-Supervised Learning of Graph Neural Networks: A Unified Review
    Xie, Yaochen
    Xu, Zhao
    Zhang, Jingtun
    Wang, Zhengyang
    Ji, Shuiwang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (02) : 2412 - 2429
  • [36] SelfGNN: Self-Supervised Graph Neural Networks for Sequential Recommendation
    Liu, Yuxi
    Xia, Lianghao
    Huang, Chao
    PROCEEDINGS OF THE 47TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2024, 2024, : 1609 - 1618
  • [37] Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
    Du, Simon S.
    Hou, Kangcheng
    Poczos, Barnabas
    Salakhutdinov, Ruslan
    Wang, Ruosong
    Xu, Keyulu
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32
  • [38] A Graph Neural Network Framework for Social Recommendations
    Fan, Wenqi
    Ma, Yao
    Li, Qing
    Wang, Jianping
    Cai, Guoyong
    Tang, Jiliang
    Yin, Dawei
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (05) : 2033 - 2047
  • [39] Rethinking Graph Regularization for Graph Neural Networks
    Yang, Han
    Ma, Kaili
    Cheng, James
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 4573 - 4581
  • [40] Graph Neural Networks with Local Graph Parameters
    Barcelo, Pablo
    Geerts, Floris
    Reutter, Juan
    Ryschkov, Maksimilian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021), 2021, 34