Status and strategies of electrolyte engineering for low-temperature sodium-ion batteries

被引:8
|
作者
Yang, Su [1 ]
Cheng, Kaipeng [3 ]
Cao, Zhenjiang [2 ]
机构
[1] Beijing Univ Chem Technol, Sch Mat Sci & Engn, Beijing 100029, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Chem, Xian 710049, Peoples R China
[3] Zhoukou Normal Univ, Sch Chem & Chem Engn, Zhoukou 466000, Peoples R China
关键词
LIQUID ELECTROLYTES; ETHYLENE CARBONATE; NONAQUEOUS ELECTROLYTES; INTERPHASE SEI; HARD CARBON; LITHIUM; GRAPHITE; PERFORMANCE; INTERCALATION; SOLVATION;
D O I
10.1039/d4ta01400f
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Sodium-ion batteries (SIBs) have attracted extensive attention owing to their advantages of abundant sodium reserves, excellent low-temperature performance, low cost and high safety compared with the widely used lithium-ion batteries. However, the application of sodium-ion batteries at extreme low temperatures is severely limited due to the increase in the electrolyte viscosity, stability of the solid electrolyte interphase (SEI), and increase in the de-solvation energy for the sodium ions (Na+). Thus, it is urgent to design novel electrolytes that can operate at freezing temperature for the further promotion and enhanced adaptability of sodium ion batteries in extreme low-temperature environments. Herein, we summarize the development of low-temperature electrolytes for sodium ion batteries based on the following components: co-solvents, sodium salts, and additives, and then propose several general strategies for the preparation of electrolytes to provide guidance for the systematic design and further commercial application of low-temperature electrolytes for SIBs. Herein, we summarize the development of low-temperature electrolyte engineering for SIBs, and then propose several strategies to provide guidance for the systematic design and further commercial application of low-temperature SIBs.
引用
收藏
页码:13059 / 13080
页数:22
相关论文
共 50 条
  • [21] A low-temperature electrolyte for lithium-ion batteries
    Shiyou Li
    Xiaopeng Li
    Jinliang Liu
    Zhichao Shang
    Xiaoling Cui
    Ionics, 2015, 21 : 901 - 907
  • [22] Low-Temperature Aqueous Na-Ion Batteries: Strategies and Challenges of Electrolyte Design
    郭秋卜
    韩帅
    陆雅翔
    陈立泉
    胡勇胜
    Chinese Physics Letters, 2023, 40 (02) : 86 - 93
  • [23] Sodium-Ion Battery at Low Temperature: Challenges and Strategies
    Zhao, Yan
    Zhang, Zhen
    Zheng, Yalong
    Luo, Yichao
    Jiang, Xinyu
    Wang, Yaru
    Wang, Zhoulu
    Wu, Yutong
    Zhang, Yi
    Liu, Xiang
    Fang, Baizeng
    NANOMATERIALS, 2024, 14 (19)
  • [24] Low-Temperature Aqueous Na-Ion Batteries: Strategies and Challenges of Electrolyte Design
    Guo, Qiubo
    Han, Shuai
    Lu, Yaxiang
    Chen, Liquan
    Hu, Yong-Sheng
    CHINESE PHYSICS LETTERS, 2023, 40 (02)
  • [25] Electrode/Electrolyte Interphases of Sodium-Ion Batteries
    Kulova, Tatiana L.
    Skundin, Alexander M.
    ENERGIES, 2022, 15 (22)
  • [26] Solubility Challenges and Strategies for Organic Sodium-Ion Batteries: Status and Perspectives
    Qi, Ying
    Zhao, Huaping
    Chen, Lizhuang
    Lei, Yong
    SMALL, 2025,
  • [27] Crystal Facet Design in Layered Oxide Cathode Enables Low-Temperature Sodium-Ion Batteries
    Peng, Bo
    Zhou, Zihao
    Xu, Jie
    Ahmad, Nazir
    Zeng, Shunqin
    Cheng, Mingyu
    Ma, Lianbo
    Li, Yongtao
    Zhang, Genqiang
    ACS MATERIALS LETTERS, 2023, 5 (08): : 2233 - 2242
  • [28] Sodium Borates: Expanding the Electrolyte Selection for Sodium-Ion Batteries
    Ould, Darren M. C.
    Menkin, Svetlana
    Smith, Holly E.
    Riesgo-Gonzalez, Victor
    Jonsson, Erlendur
    O'Keefe, Christopher A.
    Coowar, Fazlil
    Barker, Jerry
    Bond, Andrew D.
    Grey, Clare P.
    Wright, Dominic S.
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2022, 61 (32)
  • [29] Hierarchical doping electrolyte solvation engineering to achieve high-performance sodium-ion batteries in wide temperature
    Li, Enmin
    Liao, Lei
    Huang, Junjie
    Lu, Tianming
    Dai, Binghan
    Zhang, Kaibo
    Tang, Xin
    Liu, Sicheng
    Lei, Luyu
    Yin, Dongdong
    Teng, Jinhan
    Li, Jing
    ENERGY STORAGE MATERIALS, 2024, 73
  • [30] Low-temperature electrolyte for lithium and lithium-ion batteries
    Plichta, E.J.
    Behl, W.K.
    1600, Elsevier Sequoia SA, Switzerland (88):