LiDAR-UDA: Self-ensembling Through Time for Unsupervised LiDAR Domain Adaptation

被引:4
|
作者
Shaban, Amirreza [1 ]
Lee, JoonHo [1 ]
Jung, Sanghun [1 ]
Meng, Xiangyun [1 ]
Boots, Byron [1 ]
机构
[1] Univ Washington, Seattle, WA 98195 USA
关键词
D O I
10.1109/ICCV51070.2023.01812
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce LiDAR-UDA, a novel two-stage self-training-based Unsupervised Domain Adaptation (UDA) method for LiDAR segmentation. Existing self-training methods use a model trained on labeled source data to generate pseudo labels for target data and refine the predictions via fine-tuning the network on the pseudo labels. These methods suffer from domain shifts caused by different LiDAR sensor configurations in the source and target domains. We propose two techniques to reduce sensor discrepancy and improve pseudo label quality: 1) LiDAR beam subsampling, which simulates different LiDAR scanning patterns by randomly dropping beams; 2) cross-frame ensembling, which exploits temporal consistency of consecutive frames to generate more reliable pseudo labels. Our method is simple, generalizable, and does not incur any extra inference cost. We evaluate our method on several public LiDAR datasets and show that it outperforms the state-of-the-art methods by more than 3.9% mIoU on average for all scenarios. Code will be available at https://github.com/JHLee0513/lidar_uda.
引用
收藏
页码:19727 / 19737
页数:11
相关论文
共 50 条
  • [41] EM-UDA: Emotion Detection Using Unsupervised Domain Adaptation for Classification of Facial Images
    Jain, Priti R.
    Quadri, S. M. K.
    Khattar, Anuradha
    IEEE ACCESS, 2024, 12 : 140262 - 140276
  • [42] UDA-COPE: Unsupervised Domain Adaptation for Category-level Object Pose Estimation
    Lee, Taeyeop
    Lee, Byeong-Uk
    Shin, Inkyu
    Choe, Jaesung
    Shin, Ukcheol
    Kweon, In So
    Yoon, Kuk-Jin
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14871 - 14880
  • [43] LE-UDA: Label-Efficient Unsupervised Domain Adaptation for Medical Image Segmentation
    Zhao, Ziyuan
    Zhou, Fangcheng
    Xu, Kaixin
    Zeng, Zeng
    Guan, Cuntai
    Zhou, S. Kevin
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2023, 42 (03) : 633 - 646
  • [44] Diffusion-UDA: Diffusion-based unsupervised domain adaptation for submersible fault diagnosis
    Zhao, Penghui
    Wang, Xindi
    Zhang, Yi
    Li, Yang
    Wang, Hongjun
    Yang, Yang
    ELECTRONICS LETTERS, 2024, 60 (03)
  • [45] SC-UDA: Style and Content Gaps aware Unsupervised Domain Adaptation for Object Detection
    Yu, Fuxun
    Wang, Di
    Chen, Yinpeng
    Karianakis, Nikolaos
    Shen, Tong
    Yu, Pei
    Lymberopoulos, Dimitrios
    Lu, Sidi
    Shi, Weisong
    Chen, Xiang
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 1061 - 1070
  • [46] UDA-Bench: Revisiting Common Assumptions in Unsupervised Domain Adaptation Using a Standardized Framework
    Kalluri, Tarun
    Ravichandran, Sreyas
    Cliandraker, Manrnohan
    COMPUTER VISION - ECCV 2024, PT LXXXV, 2025, 15143 : 199 - 220
  • [47] Cross-Sensor Deep Domain Adaptation for LiDAR Detection and Segmentation
    Rist, Christoph B.
    Enzweiler, Markus
    Gavrila, Dariu M.
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1535 - 1542
  • [48] Unsupervised Intra-domain Adaptation for Semantic Segmentation through Self-Supervision
    Pan, Fei
    Shin, Inkyu
    Rameau, Francois
    Lee, Seokju
    Kweon, In So
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 3763 - 3772
  • [49] Incremental Unsupervised Domain Adaptation Through Optimal Transport
    El Hamri, Mourad
    Bennani, Younes
    Falih, Issam
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [50] UDALM: Unsupervised Domain Adaptation through Language Modeling
    Karouzos, Constantinos
    Paraskevopoulos, Georgios
    Potamianos, Alexandros
    2021 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL-HLT 2021), 2021, : 2579 - 2590