Hermitian-Yang-Mills connections on some complete non-compact Kähler manifolds

被引:0
|
作者
Zhang, Junsheng [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
关键词
POISSON EQUATION; VECTOR-BUNDLES; SINGULARITIES; CURVATURE; METRICS;
D O I
10.1007/s00208-024-02849-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an algebraic criterion for the existence of projectively Hermitian-Yang-Mills metrics on a holomorphic vector bundle E over some complete non-compact Kahler manifolds ( X , omega ) \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(X,\omega )$$\end{document} , where X is the complement of a divisor in a compact Kahler manifold and we impose some conditions on the cohomology class and the asymptotic behaviour of the Kahler form omega \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\omega $$\end{document} . We introduce the notion of stability with respect to a pair of (1, 1)-classes which generalizes the standard slope stability. We prove that this new stability condition is both sufficient and necessary for the existence of projectively Hermitian-Yang-Mills metrics in our setting.
引用
收藏
页码:4535 / 4575
页数:41
相关论文
共 50 条